平成29年度採択
戦略的基盤技術高度化・連携支援事業
戦略的基盤技術高度化支援事業

「機械保全に資する潤滑油オンサイト監視装置の開発」

研究開発成果等報告書

令和2年3月

担当局 経済産業省中部経済産業局
補助事業者 公益財団法人名古屋産業科学研究所
第1章 研究開発の概要

1-1 研究開発の背景・研究目的及び目標

（1）研究開発の背景

（2）研究目的及び目標

1-2 研究体制

1-3 成果概要

（1）達成内容

（2）未達成内容

1-4 当該研究開発の連絡窓口

第2章 本論

2-1 4 μm 粒子検出可能な装置開発

2-2 測定技術（装置）の国内標準化に向けた開発

2-3 計数効率評価方法の開発

2-4 校正用標準液の開発

2-5 校正技術の開発

最終章 全体総括

1 研究開発成果

2 研究開発後の課題・事業展開
第一章 研究開発の概要

1-1 研究開発の背景・研究目的及び目標

（1）研究開発の背景

産業設備機械の劣化状態を評価する手法として、潤滑油の油中粒子数濃度測定が広く利用されている。しかし、状況で油中粒子数濃度測定の障害となる気泡を取り除く必要があるため、加圧あるいは減圧等の前処理作業や、測定環境の揃ったラボへ送る等、迅速測定への障害が要因でリアルタイムに状態評価を行うことが困難であり、IoTへの活用もなされている。このため、気泡等が存在している状態での測定技術を開発する必要がある。

また、油中粒子数濃度測定装置の校正は、ISO等の指針に準拠しているものの、気泡の影響を考慮していないことや、校正用標準懸濁液に多分散粒子を用いるなど、適切な校正システムが確立しているとは言い難く、計測結果の妥当性評価が難しい。そのため、潤滑油性能評価における信頼性向上のための標準が求められている。

気泡等が存在している状態で粒子数濃度を測定する技術については、前方散乱光（遮蔽光）と側方散乱光を利用する独自原理（新技術）の高度化により、計測可能な粒子サイズを保全現場的要求である4μmにまで感度を高めることが可能と考えた（図1）。

![図1 液中粒子計測の独自技術（新技術）のイメージ](image)

また、油中粒子数濃度測定装置の校正については、単分散粒子懸濁液を作製する技術の確立が必要である。これは、既存のマイクロリアクター（図2）を用いた単一球形粒子作製技
術の高度化を図ることにより、現状の 10 µm 程度から 4 µm 未満の粒子を制作する方法を見出すことが可能であると考えた。

図 2 マイクロリアクターを用いた単一球形粒子の作製イメージ

上記開発装置および単分散粒子懸濁液を校正システムとして成立させるためには、一次国家標準へのトレーサビリティを確立する必要がある。これについては、産業技術総合研究所が水中懸濁液数濃度の一次標準を油中粒子数濃度へ橋渡しする方法を検討した。

（２）研究目的及び目標

1）研究目的

図 3（以下、「全体像」という。）に本研究開発の全体像を示す。油中粒子数測定技術（装置）と粒子数濃度標準懸濁液及び校正システムの 2 つを開発することによって、潤滑油オンサイト監視装置を完成させることを研究目的として、発電設備や航空機エンジンなどの安全稼働や保全コストの低減に資することを最終目的とする。

そのための研究課題は、新しい技術である気泡・粒子の峻別原理をコア技術とし、現在計測不可能な 4 µm の油中粒子を計測できる装置を開発すること（課題 1-1）、また、測定技術あるいは装置を標準化すること（課題 1-2）、更に、当該装置の計数効率評価方法を開発すること（課題 2-1）、さらに、校正用標準油試料を開発し（課題 2-2）、それを用いた装置校正技術の開発を行うこと（課題 2-3）とした。
産業設備機械の安全かつ適正な運転の保持
潤滑油オンサイト監視装置の開発により、発電設備や航空機エンジンなど産業設備機械の安全モニタリングの一翼を担うと共に機械保全費の削減に寄与する
4 µm 粒子検出可能な装置開発（ISO4406清浄度コードへ適用）
機械トラブルの多くは4 µm 以上の粒子が摩擦面に噛み込むことによって発生
測定技術（装置）の国内標準化（JIS規格化）
潤滑油オンサイト監視装置の完成
産業設備機械の安全かつ適正な運転の保持
潤滑油オンサイト監視装置の開発により、発電設備や航空機エンジンなど産業設備機械の安全モニタリングの一翼を担うと共に機械保全費の削減に寄与する

図 3 研究開発の全体像

2）研究目標
① 高度化目標
ア．計測機器の感度向上
従来技術では 5 µm 以上の粒子が測定可能であるが、ノイズ除去方法の開発により、ISO 4406 で必要最小粒子である 4 µm の測定に対応した測定機能の高度化を図る。
イ．計測結果の信頼性向上
従来技術では、多分散粒子からなる粒子数濃度標準懸濁液の使用により測定の正確性が懸念されることから、単分散粒子からなる粒子数濃度標準懸濁液を開発し、計測精度の高度化
を図る。

ウ. 評価（分析・解析）の効率性向上

従来技術では、油中粒子数濃度測定の障害となる気泡を取り除くため、加圧あるいは減圧等の前処理作業や測定環境の揃ったラボへ送るなどの迅速測定への障害があるが、粒子と気泡を峻別する技術により油中に気泡等が存在している状態での迅速に測定可能な機能の高度化を図る。

② 技術的目標

【1. 油中粒子数測定技術（測定装置）】

【1－1】4 μm 粒子検出可能な装置開発
（目標値） 5 μm 粒子検出から、回路のノイズ低減と取得電圧のベース補正を施することで粒子検出下限を 4 μm サイズへ向上させる。
（結果）粒子検出下限を 4 μm サイズへ向上できた。

【1－2】測定技術（装置）の国内標準化
（目標値）独自測定技術（装置）を新市場創造型標準化制度の活用により、当該測定技術（装置）の JIS 規格化を目指す。
（結果）国内標準化に向けた開発内容の整理および開発装置を用いたデータ取得を行った。

【2. 標準及び校正システム】

【2－1】計数効率評価方法の開発
（目標値）基準器の計数効率を（相対）合成標準不確かさ 10 ％ 以下で評価する。
（結果）基準器の計数効率を、産業技術総合研究所が値をつけた粒子数濃度標準懸濁液を基準器で測定することにより、基準器の計数効率は 1.00、その繰返し測定における合成標準不確かさは 0.02 と評価できた。これは相対合成標準不確かさでいうところの 2 ％ であり、目標とする相対合成標準不確かさ 10 ％ を達成できた。

【2－2】校正用標準油の開発
（目標値）球形粒子と気泡を峻別可能な相関アルゴリズムを構築する。粒子数濃度標準懸濁
液の濃度を（相対）合成標準不確かさ 10％以下で均質に作製することができるようになる。

（結 果）気泡による擬計数を 5％以下に抑える技術を開発した。球形粒子と気泡を区別可能な相関アルゴリズムを構築できた。目的サイズ（4μm）の単一球形粒子を中心に粒径約3.9μm、粒径分布の半値幅約0.6μm、再現性の相対合成標準不確かさ0.1％で作製できた。油媒体での粒子数濃度標準懸濁液の開発に先立ち、作製した粒子を純水中に懸濁させた粒子数濃度標準懸濁液を作製し、粒子数濃度の相対合成標準不確かさを3％で均質に作製することができた。

【2－3】校正技術の開発
（目標値）粒子数濃度標準懸濁液の粒子数濃度を（相対）合成標準不確かさ10％以下で作製する技術を開発する。

（結 果）油媒体での粒子数濃度標準懸濁液の粒子数濃度不確かさは評価できていないが、水媒体で作製した懸濁液の粒子数濃度は、日間再現性に対して相対合成標準不確かさ3％で作製できた。よって、今後粒子数濃度標準懸濁液を相対合成標準不確かさ10％以下で作製する技術を開発することは十分可能である。

1－2 研究体制
（1）履行体制

<table>
<thead>
<tr>
<th>事業管理機関</th>
<th>公益財団法人名古屋産業科学研究所</th>
</tr>
</thead>
<tbody>
<tr>
<td>間接補助</td>
<td>トライボテックス株式会社</td>
</tr>
<tr>
<td>間接補助</td>
<td>国立研究開発法人 産業技術総合研究所</td>
</tr>
</tbody>
</table>

協力者（アドバイザー） 国立大学法人 福井大学
学校法人 日本大学
株式会社トクヤマ
（2）管理員及び研究員

【事業管理機関】公益財団法人名古屋産業科学研究所（管理員）

<table>
<thead>
<tr>
<th>氏名</th>
<th>所属・役職</th>
</tr>
</thead>
<tbody>
<tr>
<td>久野茂正</td>
<td>中部TLO産学連携支援担当部長</td>
</tr>
<tr>
<td>三留秀人</td>
<td>中部TLO産学連携支援担当部長</td>
</tr>
<tr>
<td>丑山好夫</td>
<td>中部TLO経理担当</td>
</tr>
<tr>
<td>浅田節子</td>
<td>中部TLO経理担当</td>
</tr>
</tbody>
</table>

【間接補助事業者】トライボテックス株式会社（研究員）

<table>
<thead>
<tr>
<th>氏名</th>
<th>所属・役職</th>
</tr>
</thead>
<tbody>
<tr>
<td>吉田直樹</td>
<td>技術部・部長</td>
</tr>
<tr>
<td>井原聡</td>
<td>技術部技術開発室・室長</td>
</tr>
<tr>
<td>難家淳司</td>
<td>技術部技術開発室・主任</td>
</tr>
<tr>
<td>長門真悟</td>
<td>技術部技術開発室</td>
</tr>
</tbody>
</table>

【間接補助事業者】国立研究開発法人産業技術総合研究所（研究員）

<table>
<thead>
<tr>
<th>氏名</th>
<th>所属・役職</th>
</tr>
</thead>
<tbody>
<tr>
<td>桜井博</td>
<td>計量標準総合センター物質計測標準研究部門粒子計測研究グループ・グループ長</td>
</tr>
<tr>
<td>坂口孝幸</td>
<td>計量標準総合センター物質計測標準研究部門粒子計測研究グループ・主任研究員</td>
</tr>
<tr>
<td>車裕輝</td>
<td>計量標準総合センター物質計測標準研究部門粒子計測研究グループ・研究員</td>
</tr>
</tbody>
</table>

（3）協力者（アドバイザー）

【国立大学法人 福井大学】（アドバイザー）

<table>
<thead>
<tr>
<th>氏名</th>
<th>所属・役職</th>
</tr>
</thead>
<tbody>
<tr>
<td>本田知己</td>
<td>学術研究院工学系部門・教授</td>
</tr>
</tbody>
</table>

【学校法人 日本大学】（アドバイザー）

<table>
<thead>
<tr>
<th>氏名</th>
<th>所属・役職</th>
</tr>
</thead>
<tbody>
<tr>
<td>伊藤耕祐</td>
<td>工学部機械工学科・准教授</td>
</tr>
</tbody>
</table>
【株式会社トクヤマ】（アドバイザー）

<table>
<thead>
<tr>
<th>氏名</th>
<th>所属・役職</th>
</tr>
</thead>
<tbody>
<tr>
<td>松田 弦也</td>
<td>トクヤマ製造所 設備管理グループセメントチーム・主任</td>
</tr>
</tbody>
</table>

１—３ 成果概要
（１）達成内容
1）油中粒子数測定技術（測定装置）について
・液中の粒子と気泡を峻別でき、目つ、4 μm 粒子を検出可能な自動計数装置（基準器）
（以下、「開発装置」）を開発・完成させた。

2）標準及び校正システムについて
・開発装置の計数効率を相対合成標準不確かさ10％以下で評価できた。
・マイクロリアクターを応用することにより、4 μm 粒子を含む単分散系の微小球形粒子
を作製する手法を開発した。これにより、目的サイズの単分散懸濁液を製造する基礎ができ、
当該開発装置を校正するための粒子数濃度標準懸濁液（校正用粒子数濃度標準懸濁
液）を調整する目途を付けることができた。
・前方散乱光（遮蔽光）と側方散乱光を利用する独自の測定原理を高度化することにより、
液中の球形粒子と気泡を識別する技術を開発し、擬計数を計数値の5％以下に抑える技
術を開発した。

（２）未達成内容
・油中粒子数濃度標準懸濁液の粒子数濃度を相対合成標準不確かさ10％以下で作製する
技術については未達成である。
・今後は、油中単分散懸濁液の粒子数濃度を定常的に相対合成標準不確かさ10％以下で
作製するための環境整備、および粒子数濃度標準懸濁液が基準的にトレーサブルである
ための不確かさ評価が課題である。
第2章 本論

2-1 4 μm 粒子検出可能な装置開発

潤滑油や作動油中に含まれる異物（粒子）については、機器への悪影響を与える可能性が高い4 μm以上の粒子を検出する必要があり、一般的に用いられているISO4406清浄度コードを利用した管理最小粒径も4 μmとされている。しかし、これまで開発してきた気泡・粒子識別能力を持つ油中粒子測定装置の計測下限は5 μmであった。

そこで、以下の開発を行うことにより、液中の粒子と気泡を峻別でき、且つ、4 μm粒子を検出可能な開発装置を完成させた。

1）遮断光と散乱光を検出するフォトダイオード（PD）に光増幅回路を内蔵させることでノイズ低減を図った。3つのPDに光増幅回路を内蔵させたセンサー部外観を写真1に示す。
2）波高分析ソフトを開発し、それを用いて PD による取得波形の処理方法およびベース補正方法を改善した。

3）遮断光および散乱光の取得電圧を大粒径と小粒径に分割し、感度増幅を図った（図 4）。

4）取得電圧波形のベース電圧計算方法について、移動最小値から FFT および逆 FFT へ改善することで、計測処理時間を約 1/80 に短縮した。

開発装置の製品版について、その外観を写真 2 に示す。
2-2 測定技術（装置）の国内標準化に向けた開発

開発した測定技術（装置）の国内標準化に向けた開発内容について、表 1 に整理した。これらは、開発装置について新たに開発した原理を含め JIS B 9916 に準拠する内容を反映させたものとし、必要データの取得を行った。

<table>
<thead>
<tr>
<th>開発内容</th>
<th>パラメータ</th>
</tr>
</thead>
<tbody>
<tr>
<td>光遮蔽原理及び光散乱原理を同時利用した自動計数器</td>
<td>光遮蔽パルスおよび光散乱パルスの波高値</td>
</tr>
<tr>
<td>粒子と気泡の選別</td>
<td>光遮蔽パルスおよび 2 方向散乱パルスの同期性判定</td>
</tr>
<tr>
<td>装置構成</td>
<td>液流速調整機構</td>
</tr>
<tr>
<td>装置性能</td>
<td>粒径区分の閾値設定方法、閾値の誤差、計数効率、粒径分解能、最大粒子個数濃度、試料流量、測定時間、試料容量他</td>
</tr>
<tr>
<td>校正方法</td>
<td>新たな粒子数濃度標準懸濁液</td>
</tr>
</tbody>
</table>

2-3 計数効率評価方法の開発

粒径標準 PSL 粒子懸濁液を用いて開発装置の粒径-出力電圧校正曲線を取ることにより、粒径測定能力を評価し、開発装置の計数効率評価方法を確立した。

粒径校正試験は、表 2 に示す粒径標準粒子を用い、粒径標準粒子を 2,000 個/mL から 3,000 個/mL 程度に純水中に希釈した懸濁液を測定することにより行った。その結果を図 5 に示す。これにより、基準器の粒径校正が行えることが確認できた。

<table>
<thead>
<tr>
<th>粒子名</th>
<th>公称粒径（µm）</th>
<th>校正粒径（µm）</th>
<th>拡張不確かさ k = 2（µm）</th>
</tr>
</thead>
<tbody>
<tr>
<td>COUNT-CAL CC02-PK</td>
<td>2</td>
<td>2.020</td>
<td>0.015</td>
</tr>
<tr>
<td>Duke Standards 4203A</td>
<td>3</td>
<td>3.007</td>
<td>0.032</td>
</tr>
<tr>
<td>4um-2K-4 (200214)</td>
<td>4</td>
<td>4.000</td>
<td>0.043</td>
</tr>
<tr>
<td>COUNT-CAL CC05-PK</td>
<td>5</td>
<td>5.010</td>
<td>0.035</td>
</tr>
<tr>
<td>Duke Standards 4206A</td>
<td>6</td>
<td>6.007</td>
<td>0.040</td>
</tr>
</tbody>
</table>
計数効率評価試験は、産業技術総合研究所が通常の依頼試験による標準供給と同等の手順により値を付けた純水媒体粒子数濃度標準懸濁液を基準器で粒子数濃度測定することにより行った。

濃度は、4 μm に対して計数下限 2 μm に相当する電圧以上の計数値の合計を推定測定質量で割ることにより求めた（図 6）。基準器の計数効率は、産業技術総合研究所校正値に対する基準器測定値の比で算出した。

その結果、基準器の計数効率は 1.00、繰返し測定に対しての合成標準不確かさ 0.02 と評価できた。
2－4 校正用標準液の開発

1）マイクロリアクターを用いて、樹脂材微小粒径の単一球形粒子を作製する最適プロセスを開発し、4 μm 粒子懸濁液の作製に成功した。

開発に用いたマイクロリアクターの試験装置外観を写真 3 に、マイクロリアクターの構成を図 7 に示す。マイクロリアクターは、マイクロ流路、連続相および分散相の各送液シリンジポンプ、溶媒拡散槽から構成される。

写真 3 マイクロリアクターの試験装置外観

図 7 マイクロリアクターの構成

粒子のサイズおよび形状を決定する因子として、マイクロ流路の形式、管路幅、連続相および分散相の送液流速、界面活性剤の種類、粒子材（樹脂）濃度、溶媒拡散液
の種類と溶媒拡散時の温度などが考えられ、本研究によって 4 μm 粒子を定常的に作製できる最適条件を見出した。界面活性剤としては、ドデシル硫酸ナトリウムあるいはポリビニルアルコールを、粒子材としてはポリスチレンあるいは ABS 樹脂を採用している。

マイクロ流路内で分散相が切断され粒子の種が生成する様子を写真 4 に示す。粒子の種が溶媒拡散される際、粒子径が決定される。作製粒子の一例を写真 5 に示す。

写真 4 マイクロ流路内で分散相が切断される様子

写真 5 作製粒子の SEM 写真
本最適条件で作製した3種類の4μmの純水中ポリスチレン懸濁液（それぞれ191105-2H、191106-2H、191112-2Hとラベリング）に関し、産業技術総合研究所で粒径、粒度分布を評価した。その結果、コンタミネーションによるバックグラウンドノイズの発生が若干見られたものの、ピーク位置をガウス関数でフィッティングしたところ、中心粒径は約3.9μmであり、粒径分布が半値幅で約0.6μm、作製粒子中心径の日による再現性の相対合成標準不確かな0.1％となった。これにより、作製粒子が粒子数濃度標準懸濁液作製に対する十分な単分散性を持つことが確認できた（図8）。

図8 作製粒子懸濁液の計数粒度分布

また、図9は粒子作製日が異なる試料懸濁液の粒子濃度を比較した結果である。色の違いが粒子作製日の違いを表している。これに基づく詳細な濃度測定分散分析結果から、作製懸濁液粒子数濃度の粒子作製数日の粒径再現性は3％の相対合成標準不確かなさであり、将来の粒子数濃度標準懸濁液作製に対する十分な粒子数濃度安定性をもって作製できたことが確認された。
以上により、マイクロリアクターを用いて作製した微小球形粒子は、光遮蔽式測定装置に使用するに十分な単分散性を有することが検証できた。

2) 基準器の散乱光検出精度を向上させ、前方散乱光と2方向の側方散乱光の相関アルゴリズムから微小球形粒子においても気泡を識別する方法に高度化した。

図10は、前方散乱光の検出電圧と側方散乱光の検出電圧における3D相関（以下、「3D相関」）を示している。図10（a）では前方散乱光の検出電圧軸（以下、「軸」）に張り付いているプロットが液中の不定形粒子を示すのに対し、図10（b）では液中の球形粒子は軸近辺に存在するプロットで示される。つまり、液中の球形粒子は3D相関において、不定形粒子および気泡の発現領域とは異なる領域に発現することから、開発装置は球形粒子と気泡を識別・計数することが可能であることが検証された。
2.5 校正技術の開発

粒子数濃度標準懸濁液加工手順と粒子数濃度不確かさの評価方法について、基準器を用いて検証した（図11 基準器による4μm粒子数濃度標準懸濁液測定結果ヒストグラム）。その結果、標準として使用可能な条件を確立するための目処を付けることができた。

図10 開発装置における前方散乱光の検出電圧と側方散乱光の検出電圧との3D相関

図11 基準器による4μm粒子数濃度標準懸濁液測定結果ヒストグラム

今後は、油中単分散懸濁液を定常的に粒子数濃度の合成相対標準不確かさ10%以下で作製するための環境整備および作製した懸濁液に一次標準へのトレーサビリティを持たせるための不確かさ評価に向け、産業技術総合研究所との連携を継続する。
最終章 全体総括

1 研究開発成果

本研究開発事業の成果としては、液中の粒子と気泡を区別でき、且つ、4 μm 粒子を検出可能な開発装置を完成させたこと（写真 2）、更に、単一粒径の微小球形粒子を作製する方法を確立し（写真 5 および図 8）、油中単分散粒子数濃度標準懸濁液（以降、「懸濁液」）の供給に目処を付けたことである。

開発装置は、微小粒子に対する S/N 比の向上および球形粒子と気泡を識別する新技術の高度化により実現させた。粒子作製方法の確立は、既存技術を応用、高度化することで最適条件を見出すことにより実現させた。

これらの成果は、産業設備機械の安全、且つ、適正な運転の保持に寄与するものと期待される。

2 研究開発後の課題・事業化展開

今後の課題は、① 開発装置を広く販売するために、② 校正に用いる粒子・懸濁液製造システムの特許出願や新市場開発型標準化制度を適用した標準化を目指すことである。そのための追加研究として、装置校正用油中粒子数濃度標準懸濁液の完成およびそれを用いた油中粒子計測におけるトレーサビリティの確立を目指し、次年度から産業技術総合研究所との共同研究を継続する。

事業化展開については、大きく以下の 2 項目を計画している。

1）開発装置の製造・販売

風力を含む発電設備やガス設備を有するエネルギー業界、航空機エンジンを有する航空機業界をはじめとする交通機関、各種モータやポンプを有する上下水道や石油・化学業界など、回転・摺動部を有する動的設備機械を利用してあるるゆる産業域での状態監視への活用を想定し、来年度からサンプル出荷と同時に製造販売を行う計画である。

実際、開発装置については、計 5 回の展示会出展（例：写真 6）によるマーケティング調査にて、船舶、農業、風力発電、下水道の各業界において適用ニーズが高いことが判明しており、製造体制の構築を並行して実施する必要があると考えている。
写真 6 「下水道展’19 横浜」出展の様子

2）油中単分散球形粒子懸濁液標準の製造・販売

油中単分散球形粒子懸濁液は、現在の一次標準である油中多分散不定形粒子懸濁液（NIST SRM 2806 b）に代わる安価、且つ、粒径・計数効率を正確に値つけ可能なものにするため、来年度より標準化を目指し、令和 4 年度からの供給を計画している。実際に、上記一次標準は現状ロットで枯渇し、新規校正方法が奨励されていることからも、当該標準の必要性は非常に高く喫緊の事案と考えている。