平成 24 年度戦略的基盤技術高度化支援事業

「パワー半導体混載モジュールの
樹脂封止剤真空加圧成形プロセスの開発」

研究発表成果等報告書

平成 25 年 3 月

委託者 近畿経済産業局
委託先 特定非営利活動法人産学金連携センター
第 1 章	研究開発の概要	1
1-1	研究開発の背景・研究目的及び目標	1
1-2	研究体制	1
1-3	成果概要	2
1-4	当該研究開発の連絡窓口	3
第 2 章	本論	4
2-1	真空加圧成形システム用液状封止樹脂の開発	4
2-1-1	硬化系の違いによる熱伝導率の変化	4
2-1-2	サーモグラフィーによる放熱性の確認	5
2-1-3	加温時の物性確認	7
2-1-4	さらなる高熱伝導化	9
2-2	真空加圧成形システム用顆粒封止樹脂の開発	10
2-2-1	樹脂の高 Tg 化および高熱伝導率化	10
2-2-2	TGA による樹脂硬化物の耐熱性寿命予測	12
2-3	真空加圧システムで試作したモジュールの評価	14
2-3-1	発熱 TEG チップによる熱抵抗の確認	14
2-3-2	リフローシミュレーターによる反りの確認	19
第 3 章	全体総括	23
3-1	研究開発成果	23
3-2	今後の課題および事業化展開	23
参考文献・引用文献	24	
専門用語の解説	24	
第1章　研究開発の概要

1-1　研究開発の背景・研究目的及び目標

近年の低炭素化社会の実現や省エネルギー化の流れの中で、電力を高効率に制御可能なパワー半導体市場が急速に拡大している。特に、従来のシリコンチップに代わり、低損失で、高速、高温動作が可能なSiCやGaNなどの開発が活発に行われている中、パワー半導体パッケージを構成する封止樹脂にも、高放熱かつ高耐熱材料のニーズが高まっている。

サンユレック株式会社では、従来から液状エポキシ樹脂を活用する真空印刷封止システム（Vacuum Printing Encapsulation System: WPES法）を開発し、封止モールドを形成してきたが、モジュールの一層のコンパクト化に対して、厚み、形状の寸法精度が厳しく要求され、封止プロセス面でも新たなニーズが高まっている。

本研究では、このような次世代パワー半導体を混載したモジュールパッケージ用に、寸法精度が良好で高密度パッケージへの封止が可能な真空加圧成形システムの工法開発と、プロセスにマッチした高信頼性樹脂の開発を行い、川下ユーザーカのニーズに対応することを目的とする。

1-2　研究体制

(1)　研究組織

特定非営利活動法人産学連携センター

再委託　サンユレック株式会社

再委託　学校法人関西大学

総括研究代表者（PL）
サンユレック株式会社
海外本部
部長　永井孝一良

副総括研究代表（SL）
学校法人関西大学
化学生命工学部　科学物質工学科
准教授　原田美由紀

(2)　管理体制

事業管理機関
特定非営利活動法人産学連携センター

理事長　事務局長　産学連携推進部
成果概要

パワー半導体を混載したモジュール用封止樹脂の開発では、高熱伝導フィラーの表面処理技術を粒度分布設計から効率よく細密充填し、熱伝導率5W/mK以上を持つ液状樹脂、顆粒樹脂を開発した。高耐熱性では、樹脂のTg（ガラス転移温度）を高くし、高温時動作で物性の変動が無く、
いよう樹脂設計を行った。その結果、エポキシ系では Tg 300℃、シアネートエステル樹脂では Tg 350℃を持つ顆粒樹脂材料を開発した。

さらに、今回開発した樹脂を使って、TG/DTA による熱寿命についての確認を行い、290℃の高温下では、Tg が高いほど耐熱性が高かったが、200℃の耐熱寿命では、必ずしも高 Tg が高耐熱寿命であるという結果にはつながらないということがわかった。

真空加圧成形システムで成形したモジュールの評価として、発熱 TEG チップが搭載されたパッケージの熱抵抗の評価を行い、高熱伝導と高 Tg の効果について確認ができた。今後は、これら開発した樹脂材料製品の拡販に努めていく。

1-4 当該研究開発の連絡窓口

特定非営利活動法人産学金連携センター
〒170-0005 東京都豊島区南大塚2丁目14番12号 YSビル101
産学連携推進部 部長 伊藤瑛二
Tel. 03-6902-0526 / Fax. 03-6902-0546
第2章 本論

2-1 真空加圧成形システム用液状封止樹脂の開発

パワーハート体物質モジュールへの封止樹脂として、真空加圧成型システムによる液状タイプの高熱伝導樹脂を開発することを目標に掲げた。液状タイプの樹脂は、成型時の粘度がより低く、低圧で成型できる点がメリットである。大チップサイズFCへの同時アンダーフィルや、流れやすいワイヤーボンド接続など、狭ギャップでストレスを嫌うモジュールへの成形性が良好となる。

本開発では、硬化系の違いによる熱伝導率、および高温時の熱伝導率や絶縁性の変化を確認した。また、高熱伝導フィラーやの表面処理技術や粒度分布の調整により、効率よく細密充填させ、5W/mkを超える熱伝導率を持つ液状樹脂を開発することができた。

なお、熱伝導率の測定には、ブルカー製キセノンフラッシュアナライザーLFA447 Nanoflashを使用した。

2-1-1 硬化系の違いによる熱伝導率の変化

ビスフェノールF型エポキシ樹脂をベースとして、硬化剤には酸無水物、液状フェノール、イミダソール触媒系の3種を使用したそれぞれの系に、充填剤として、球状Al₂O₃を添加量を変えた時の、熱伝導率の違いについて確認した。（表1）

<table>
<thead>
<tr>
<th>硬化剤</th>
<th>75wt% 45.2vol%</th>
<th>80wt% 52.4vol%</th>
<th>85wt% 60.9vol%</th>
<th>90wt% 71.2vol%</th>
</tr>
</thead>
<tbody>
<tr>
<td>酸無水物</td>
<td>1.2</td>
<td>1.6</td>
<td>2.0</td>
<td>ー</td>
</tr>
<tr>
<td>フェノール</td>
<td>1.3</td>
<td>1.7</td>
<td>2.2</td>
<td>ー</td>
</tr>
<tr>
<td>イミダソール</td>
<td>1.6</td>
<td>2.0</td>
<td>2.8</td>
<td>4.0</td>
</tr>
</tbody>
</table>

※エポキシ樹脂：ビスフェノールF型

硬化剤として酸無水物とフェノールを用いた樹脂系に比べて、イミダゾールを用いた樹脂系の熱伝導率が高くなっていることが分かる。（図1）また、3種の硬化剤を用いた場合でも、Al₂O₃の充填量が増加するとともに熱伝導率も高くなっている。
図 1 硬化系の違いによる熱伝導率変化

ベース樹脂のみ（フィラーなし）の熱伝導率を調べると、表 2 のような結果となった。これは、樹脂硬化物の骨格の違いに起因するものであると考えられる。

表２ ベース樹脂（フィラーなし）の熱伝導率

<table>
<thead>
<tr>
<th>硬化剤</th>
<th>熱伝導率（W/mK）</th>
</tr>
</thead>
<tbody>
<tr>
<td>酸無水物</td>
<td>0.135</td>
</tr>
<tr>
<td>フェノール</td>
<td>0.155</td>
</tr>
<tr>
<td>イミダゾール</td>
<td>0.183</td>
</tr>
</tbody>
</table>

※0wt%（充填剤なし）

2-1-2 サーモグラフィーによる放熱性の確認

サーモグラフィーを用いて、樹脂の熱伝導率の違いによる放熱性について確認した。高熱伝導の測定樹脂としては、アルミナフィラーを用いた 2W/mK 品と 4W/mK 品および、2W/mK 品で Tg を 150℃と 230℃に変えたものを用意した。また、フィラーなしのエポキシ樹脂 Y、一般的な液状封止樹脂 M をモニターとして比較した。（表 3）

表3 サーモグラフィーによる放熱性確認樹脂

<table>
<thead>
<tr>
<th>樹脂</th>
<th>フィラー</th>
<th>Tg（℃）</th>
<th>熱伝導率（W/mK）</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y</td>
<td>なし</td>
<td>0wt%</td>
<td>150 0.2</td>
</tr>
<tr>
<td>M</td>
<td>シリカ</td>
<td>78wt%</td>
<td>80 0.8</td>
</tr>
<tr>
<td>B</td>
<td>アルミナ</td>
<td>80wt%</td>
<td>150 2.0</td>
</tr>
<tr>
<td>C</td>
<td>〃</td>
<td>88wt%</td>
<td>150 4.0</td>
</tr>
<tr>
<td>D</td>
<td>〃</td>
<td>85wt%</td>
<td>230 2.0</td>
</tr>
</tbody>
</table>

測定用硬化物サンプルは、体積が同じになるよう、計量カップに 50cc の樹脂を充填し、気泡が残らないよう十分脱気を行った。測定方法は、100℃のホットプレート上で、作成した硬化サンプルをのせ、一定時間後の表面温度をサーモグラフィーで解析した。（図 2）
図 2 サーモグラフィーによる放熱性確認方法

100℃のホットプレートに硬化物をのせたから、5分間隔で20分間測定した。その結果を図3、図4に示す。熱伝導率に応じて表面温度が高くなっていることがわかる。

<table>
<thead>
<tr>
<th>樹脂</th>
<th>Y</th>
<th>MUF</th>
<th>B</th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>W/mK</td>
<td>0.2</td>
<td>0.8</td>
<td>2</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>初期</td>
<td>25.4℃</td>
<td>26.1℃</td>
<td>25.2℃</td>
<td>25.5℃</td>
<td>25.6℃</td>
</tr>
<tr>
<td>5分後</td>
<td>37.7℃</td>
<td>43.2℃</td>
<td>42.6℃</td>
<td>46.3℃</td>
<td>43.2℃</td>
</tr>
<tr>
<td>10分後</td>
<td>45.2℃</td>
<td>54.8℃</td>
<td>54.6℃</td>
<td>57.4℃</td>
<td>57.1℃</td>
</tr>
<tr>
<td>15分後</td>
<td>47.5℃</td>
<td>54.8℃</td>
<td>61.8℃</td>
<td>66.4℃</td>
<td>62.8℃</td>
</tr>
<tr>
<td>20分後</td>
<td>52.7℃</td>
<td>64.2℃</td>
<td>67.1℃</td>
<td>72.3℃</td>
<td>67.6℃</td>
</tr>
</tbody>
</table>

図 3 熱伝導率違いによる放熱性の確認
2-1-3 加温時の物性確認

パワー半導体チップが発熱した場合を想定し、樹脂温度が上昇した場合の熱伝導率の変化と絶縁性について確認した。表4に使用した樹脂の常温下での熱伝導率とTgを示す。

表4 加温時の物性確認樹脂

<table>
<thead>
<tr>
<th>樹脂</th>
<th>フィラー</th>
<th>充填量</th>
<th>Tg (℃)</th>
<th>熱伝導率 (W/mK)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>シリカ</td>
<td>80wt%</td>
<td>150</td>
<td>0.8</td>
</tr>
<tr>
<td>B</td>
<td>アルミナ</td>
<td>80wt%</td>
<td>〃</td>
<td>2.0</td>
</tr>
<tr>
<td>C</td>
<td>〃</td>
<td>88wt%</td>
<td>〃</td>
<td>4.0</td>
</tr>
<tr>
<td>D</td>
<td>〃</td>
<td>85wt%</td>
<td>230</td>
<td>2.0</td>
</tr>
<tr>
<td>E</td>
<td>〃</td>
<td>85wt%</td>
<td>270</td>
<td>2.0</td>
</tr>
<tr>
<td>F</td>
<td>〃</td>
<td>84wt%</td>
<td>350</td>
<td>2.0</td>
</tr>
</tbody>
</table>

熱時の熱伝導率を測定した結果を図5に示す。同じ2W/mKの樹脂（E、F）では、Tgの影響はあまり見られない。また熱伝導率の高いものほど、熱時の熱伝導率が下がっている。
同様の樹脂で熱時の絶縁性の確認のため、体積抵抗変化を確認した。Tg の異なる 2W/mK の樹脂の熱時体積抵抗の結果を図 6 に示す。Tg の低い樹脂 B の体積抵抗率は、温度とともに落ちているが、Tg が 200℃以上ある D, E, F は、ばらつきはあるものの落ち具合は小さく、200℃でも 14 乗以上の高い絶縁性を維持している。
さらなる高熱伝導化

2-1-1 硬化系の違いによる熱伝導率の変化で得られた結果から、イミダゾール系でさらなる高熱伝導化を検討した。最も安価で種類も多く細密充填が可能なアルミナフィラーをベースに、窒化ホウ素および窒化アルミを充填して細密充填し、キセノンフラッシュ法で、熱伝導率を測定した。その結果を、表5に示す。L-6の窒化アルミを用いた系で、5.6W/mKという高い熱伝導率を達成することができた。

表5 新規高熱伝導フィラーを用いた樹脂の熱伝導率

<table>
<thead>
<tr>
<th>項目</th>
<th>L-1</th>
<th>L-2</th>
<th>L-3</th>
<th>L-4</th>
<th>L-5</th>
<th>L-6</th>
</tr>
</thead>
<tbody>
<tr>
<td>エポキシ樹脂・硬化系</td>
<td>ビスフェノール F 型エポキシ樹脂－イミダゾール</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>フィラー種類</td>
<td>Al₂O₃ (100)</td>
<td>Al₂O₃:BN (80:20)</td>
<td>Al₂O₃:AlN (50:50)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>熱伝導率（W/mK）</td>
<td>3.1</td>
<td>4.8</td>
<td>5.3</td>
<td>4.4</td>
<td>3.5</td>
<td>5.6</td>
</tr>
</tbody>
</table>
2-2 真空加圧成形システム用顆粒封止樹脂の開発

本開発では、パワーハーフ導体混載モジュールへの封止樹脂として、真空加圧成型システムによる
顆粒タイプの高熱伝導樹脂を開発することを目標に掲げた。メインの樹脂には固形エポキシ樹脂
およびシアネートエステル樹脂を用いて検討を行った。シリカ、アルミナなどの高熱伝導率フィ
ラーを用いて材料の開発を行い、エポキシ樹脂では Tg 300℃近く、シアネートエステル樹脂で
は Tg 340℃の材料を開発した。
さらに、それらの樹脂系を用いて高熱伝導率フィラーを高充填し、高放熱材料を開発を試みた。
その結果、5.0W/mK程度の熱伝導率を持つ硬化物を得ることができた。

2-2-1 樹脂の高 Tg 化および高熱伝導率化

樹脂硬化物の耐熱性および熟信頼性向上のために、ベースとなるエポキシ樹脂系配合の検討し
た。ここでは、自動車車載用途で実績のある配合"P-0"をベースとした。
P-0 は Tg は高めに設定しているが、樹脂強度を優先し、熱伝導についてケアしていない配合
である。（表 6）耐熱用途として実績があるため、検討の基本に据えた。

<table>
<thead>
<tr>
<th>表 6 検討基本樹脂サンプル P-0 の基本物性（カタログ値）</th>
</tr>
</thead>
<tbody>
<tr>
<td>項目</td>
</tr>
<tr>
<td>特徴</td>
</tr>
<tr>
<td>フィラー量</td>
</tr>
<tr>
<td>フィラーエン</td>
</tr>
<tr>
<td>ゲル化時間</td>
</tr>
<tr>
<td>線膨張係数 α 1</td>
</tr>
<tr>
<td>線膨張係数 α 2</td>
</tr>
<tr>
<td>ガラス転移温度 Tg</td>
</tr>
<tr>
<td>熱伝導率</td>
</tr>
</tbody>
</table>

P-1 では、半導体用途に向けて熱伝導性を付与するため、フィラー成分をシリカからアルミナ
に変更した。P-1 はフィラー充填度が 67w%と低いので、さらに高い Tg を展望して P-2〜5 で
は樹脂系の改良検討を行った。（表 7）
P-2〜5 では、フィラー充填度を 80w%まであげてサンプルを作成した。P-2 は硬化剤に酸無水
物系硬化剤を検討した。酸無水物系硬化剤は、硬化物の耐熱性向上が期待できる。P-3 は、多官
能のエポキシ樹脂を添加した。架橋密度を上げて Tg を上げる狙いがある。P-4 は、変性エポキ
シ樹脂を廃し、多官能エポキシ樹脂で補った。変性エポキシ樹脂は 2 官能であるのに対し、多官
能のエポキシを増量して架橋密度をあけて Tg を上げる狙いがある。P-5 は、特殊な骨格を持
つ結晶性のエポキシ樹脂を用いた。剛直かつ、立体障害の大きい構造を持つエポキシ樹脂を使用
する事で、耐熱性の向上を目指した。P-6 は、全体中の多官能エポキシ樹脂の含有率を上げた。
表 7 各検討エポキシ配合樹脂の硬化物物性（硬化条件: 100℃/1h+150℃/3h）

<table>
<thead>
<tr>
<th>樹脂</th>
<th>Tg (℃)</th>
<th>弾性率 (Mpa)</th>
<th>CTE (ppm)</th>
<th>熱伝導率 (W/mK)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>23℃</td>
<td>260℃</td>
<td>α1</td>
</tr>
<tr>
<td>P-0</td>
<td>187</td>
<td>8800</td>
<td>50</td>
<td>33</td>
</tr>
<tr>
<td>P-1</td>
<td>188</td>
<td>16000</td>
<td>120</td>
<td>30</td>
</tr>
<tr>
<td>P-2</td>
<td>178</td>
<td>9000</td>
<td>120</td>
<td>35</td>
</tr>
<tr>
<td>P-3</td>
<td>232</td>
<td>10000</td>
<td>5400</td>
<td>36</td>
</tr>
<tr>
<td>P-4</td>
<td>270</td>
<td>17000</td>
<td>3600</td>
<td>28</td>
</tr>
<tr>
<td>P-5</td>
<td>226</td>
<td>17000</td>
<td>300</td>
<td>30</td>
</tr>
<tr>
<td>P-6</td>
<td>288</td>
<td>20000</td>
<td>5600</td>
<td>25</td>
</tr>
</tbody>
</table>

※Tg は DMA 法で測定

上記エポキシ樹脂系とあわせて、シアネート樹脂系配合も検討した。シアネート樹脂にもエポキシ樹脂と同様に固形樹脂が存在する。この固形樹脂を用いれば、真空加圧システムにも使用できる顆粒樹脂としての応用が期待できる。

シアネート樹脂は、高い耐熱性を有する硬化物を与える。反応が暴走しやすいなど欠点もあるが、上手く使えばその耐熱性を十分に生かせと考えた。シアネート樹脂は硬化剤、硬化触媒、溶融撹拌温度によっては爆発的に反応してしまう事があり、その取り扱いには注意を要する。各種硬化剤などを組み合わせて検討し、今回は比較的穏やかに反応する系を選んだ。

CN-3 は高粘度のため、充填率は 67％から検討を開始した。CN-4 では、フィラー充填率を 80％まで引き上げ、特性の取得などを行った。安定した硬化物が得られた CN-3、CN-4 について、硬化物特性を表 8 に示す。

表 8 各検討シアネート配合樹脂の硬化物物性（硬化条件：150℃/1h+200℃/3h）

<table>
<thead>
<tr>
<th>Tg (℃)</th>
<th>弾性率 (MPa)</th>
<th>CTE (ppm)</th>
<th>体積抵抗率 (Ω・cm)</th>
<th>吸水率 (%)</th>
<th>加熱減量 (%)</th>
<th>熱伝導率 (W/mK)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>23℃</td>
<td>260℃</td>
<td>α1</td>
<td>α2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CN-3</td>
<td>329</td>
<td>9800</td>
<td>4500</td>
<td>25</td>
<td>63</td>
<td>1.3×10^16</td>
</tr>
<tr>
<td>CN-4</td>
<td>358</td>
<td>18000</td>
<td>10000</td>
<td>21</td>
<td>50</td>
<td>9.5×10^15</td>
</tr>
<tr>
<td>備考</td>
<td>DMA</td>
<td>DMA</td>
<td>DMA</td>
<td>TMA</td>
<td>TMA</td>
<td>-</td>
</tr>
</tbody>
</table>

CN-3、CN-4 では、150℃/1h+200℃/3h の硬化条件では、Tg のピークが二峰となった。そこで、硬化条件を 150℃/1h+200℃/3h+250℃/3h に変更し、硬化最高温度を上げて調べると、ピークが単峰になった。

CN-3、CN-4 について、この高い硬化条件での特性取得を行った。（表 9）実装の現場では、はんだリフローの温度に近い硬化条件のため、現状の実装材料では現実的ではないが、シアネートエステル樹脂系の耐熱性を確認するために取得した。
表 9 各検討シアネート配合樹脂の硬化物物性 高温硬化

<table>
<thead>
<tr>
<th>樹脂</th>
<th>Tg (℃)</th>
<th>弾性率(MPa)</th>
<th>300℃100h減量</th>
<th>分解開始温度 (℃)</th>
<th>熱伝導率 (W/mK)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CN-3</td>
<td>＞325</td>
<td>10000</td>
<td>5400</td>
<td>-4.6%</td>
<td>401</td>
</tr>
<tr>
<td>CN-4</td>
<td>＞360</td>
<td>19000</td>
<td>12000</td>
<td>-2.9%</td>
<td>432</td>
</tr>
</tbody>
</table>

さらに、高 Tg 化の期待ができる CN-4 をベースに用いて検討を行った。（CN-6）アルミナフィラー以外の高放熱フィラーを混合することで、熱伝導率 5.0W/mK 程度を達成した。（表 10）

表 10 シアネートエステル樹脂硬化物の DMA および熱伝導率測定結果

<table>
<thead>
<tr>
<th>樹脂</th>
<th>Tg (℃)</th>
<th>弾性率(MPa)</th>
<th>熱伝導率 (W/mK)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CN-6</td>
<td>336</td>
<td>97300</td>
<td>33500</td>
</tr>
</tbody>
</table>

2-2-2 TGA による樹脂硬化物の耐熱性寿命予測

デバイスの劣化・故障の予測を行うためには、一般的に、アレニウスモデルが用いられる。アレニウスモデルは、劣化・故障の温度依存に対する基本的な化学反応モデルであり、加速寿命試験の寿命推定に利用される。ある劣化量に達したときの寿命を t とすると、数式 1 で表される。

\[
\tau = A \cdot \exp \left(\frac{E_a}{kT} \right) \\
\ln \tau = \left(\frac{E_a}{k} \right) \left(\frac{1}{T} \right) + \ln A
\]

A: 定数
Ea: 活性化エネルギー
k: ボルツマン定数
T: 絶対温度

数式 1 アレニウスモデル

ある温度 T における寿命 t を推定するために、T よりも高い温度(T1, T2, T3, ...)における寿命(t1, t2, t3, ...)を測定により求める。次に、横軸に 1/T、縦軸に lnτ をとりプロットする。これにより、1/T と lnτ の間に直線関係があることがわかる。その近似直線を引くことによって、ある温度 T における lnτ がわかるので、寿命 t を算出することができる。

作成したサンプルにおいて、Tg を持つ材料の耐熱性を TG/DTA で確認した結果を表 11 に示す。200℃ での長期耐熱性は、アレニウスプロットにより予測した。
表 11 耐熱寿命（TG/DTA）

<table>
<thead>
<tr>
<th>サンプル</th>
<th>Tg（℃）</th>
<th>290℃（h）</th>
<th>T290℃（h）</th>
</tr>
</thead>
<tbody>
<tr>
<td>液状 A</td>
<td>230</td>
<td>2.4</td>
<td>3125</td>
</tr>
<tr>
<td>顆粒 B</td>
<td>270</td>
<td>75.6</td>
<td>12164</td>
</tr>
<tr>
<td>顆粒 C</td>
<td>350</td>
<td>141.0</td>
<td>12443</td>
</tr>
</tbody>
</table>

アレニウスプロットによる 200℃の予測時間は、Tg 270℃と Tg 350℃で近い予測となり、必ずしも Tg が高いほど耐熱性が高いという結果にはならなかった。しかし、高温 290℃で 5%重量減少する実測時間は、Tg 230℃の材料は2.4Hr、Tg 270℃の材料は75.6Hr、Tg 350℃の材料は141Hrと、Tg が高いほど耐熱性が高いことがわかった。
2-3 真空加圧システムで試作したモジュールの評価

開発した液状樹脂と顆粒樹脂について、発熱TEGチップを用い、Tgと熱伝導率の値による熱抵抗測定および解析を行った。熱伝導率が高いほど、放熱性に優れることから、大電力を印加しても、チップ表面の発熱が抑えられることがわかった。また、同一の熱伝導率を持つ樹脂で比較すると、Tgが高いほど放熱性に優れ、同様に大電力の印加が可能であることが分かった。さらに、リフローシミュレーターより、それぞれの樹脂のリフロー時の反りを計測し、実装信頼性について考察した。

2-3-1 発熱TEGチップによる熱抵抗の確認

樹脂の放熱性について検討するために、発熱TEGチップを用いた解析を行った。発熱TEGチップは、チップ上に2系統の抵抗配線を配置したものである。今回使用したTEGチップは、QFN（Quad Flat Non-leaded Package）フレームに発熱TEGチップを搭載したものであり、チップ材質にはアルミナを、ダイアタッチ樹脂には耐熱性を考慮しイミド系樹脂を使用している。（図7、図8、図9）

図7 発熱TEGチップ概略図と仕様
あらかじめ TEG チップの抵抗の温度特性を測定しておくことによって、正確なチップ温度の測定が可能である。確認した評価樹脂を表12に示す。

A〜Eの5水準について、評価を行った。同一 Tgで熱伝導率をふったものが A、B、Cである。また、熱伝導率をおおよそ一定にし、Tgをふったものが B、D、Eである。発熱 TEG チップの表面温度の変化を確認し、その後、チップを所定の温度に昇温させるために必要な印加パワーについて、樹脂ごとの変化を確認した。

<table>
<thead>
<tr>
<th>樹脂</th>
<th>Tg(℃)</th>
<th>熱伝導率(W/mK)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A（液状）</td>
<td>150</td>
<td>0.7</td>
</tr>
<tr>
<td>B（液状）</td>
<td>150</td>
<td>2.0</td>
</tr>
<tr>
<td>C（液状）</td>
<td>150</td>
<td>4.0</td>
</tr>
<tr>
<td>D（液状）</td>
<td>230</td>
<td>2.0</td>
</tr>
<tr>
<td>E（顆粒）</td>
<td>270</td>
<td>2.0</td>
</tr>
</tbody>
</table>

熱抵抗は、数式2により求められる。今回は、チップ表面温度 Tj100℃、150℃、200℃の時の印加パワーと樹脂表面温度から、熱抵抗値を求める。

\[
\theta_{jc}(℃/W) = \frac{\text{チップ表面温度 } T_j(℃) - Tc(℃)}{\text{印加パワー (W)}}
\]

数式2 熱抵抗式

表13に、測定した熱抵抗結果を示す。図10より、熱伝導率が高い樹脂ほど熱抵抗値が小さく、また同じ熱伝導率では、Tgが高い樹脂の方が、熱抵抗値が小さくなっていることがわかる。
測定時の樹脂表面温度をまとめると、表14となる。図11より、熱伝導率が高いほど、樹脂表面温度が高くなっていることが分かる。このことは、熱伝導率が高いほど放熱性が良いということを示している。

表13 熱抵抗値

<table>
<thead>
<tr>
<th>樹脂</th>
<th>熱伝導率 (W/mK)</th>
<th>Tg (℃)</th>
<th>熱抵抗値 θJc (℃/W)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Tj=100℃</td>
</tr>
<tr>
<td>A</td>
<td>0.7</td>
<td>150</td>
<td>13.7</td>
</tr>
<tr>
<td>B</td>
<td>2.0</td>
<td>150</td>
<td>7.3</td>
</tr>
<tr>
<td>C</td>
<td>4.0</td>
<td>150</td>
<td>3.9</td>
</tr>
<tr>
<td>D</td>
<td>2.0</td>
<td>230</td>
<td>6.6</td>
</tr>
<tr>
<td>E</td>
<td>2.0</td>
<td>270</td>
<td>5.5</td>
</tr>
</tbody>
</table>

※N=3の平均値

表14 樹脂表面温度

<table>
<thead>
<tr>
<th>樹脂</th>
<th>熱伝導率 (W/mK)</th>
<th>Tg (℃)</th>
<th>測定時の樹脂表面温度 (℃)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Tj=100℃</td>
</tr>
<tr>
<td>A</td>
<td>0.7</td>
<td>150</td>
<td>29.0</td>
</tr>
<tr>
<td>B</td>
<td>2.0</td>
<td>150</td>
<td>32.4</td>
</tr>
<tr>
<td>C</td>
<td>4.0</td>
<td>150</td>
<td>38.6</td>
</tr>
<tr>
<td>D</td>
<td>2.0</td>
<td>230</td>
<td>34.3</td>
</tr>
<tr>
<td>E</td>
<td>2.0</td>
<td>270</td>
<td>37.3</td>
</tr>
</tbody>
</table>
図 11 樹脂表面温度グラフ（熱伝導率）

図 12 より、同等の 2W/mK の熱伝導率を持ち、Tg が異なる樹脂では、Tg が高いほど、樹脂表面温度も高くなる傾向が見られる。これは、ある所定の高温時の熱伝導率が Tg の高い樹脂ほど高くなっているからであると推察される。したがって、樹脂の熱伝導率が高いだけでなく、Tg が高いことも放熱性に良い効果を示すということが言える。

図 12 樹脂の表面温度グラフ（Tg）

測定時の印加パワーをまとめると表 15 となる。図 13 より樹脂の熱伝導率が高いほど、発熱 TEG チップを所定の高温にするための印加パワーが大きいことが分かる。このことは、熱伝導率が高い樹脂の方が、より大きな電力をかけることが可能であることを示している。
表 15 印加パワー

<table>
<thead>
<tr>
<th>樹脂</th>
<th>熱伝導率 (W/mK)</th>
<th>Tg (℃)</th>
<th>測定時の印加パワー</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Tj=100℃</td>
</tr>
<tr>
<td>A</td>
<td>0.7</td>
<td>150</td>
<td>5.5</td>
</tr>
<tr>
<td>B</td>
<td>2.0</td>
<td>150</td>
<td>9.3</td>
</tr>
<tr>
<td>C</td>
<td>4.0</td>
<td>150</td>
<td>15.7</td>
</tr>
<tr>
<td>D</td>
<td>2.0</td>
<td>230</td>
<td>10.0</td>
</tr>
<tr>
<td>E</td>
<td>2.0</td>
<td>270</td>
<td>11.3</td>
</tr>
</tbody>
</table>

図 13 印加パワーのグラフ（熱伝導率）

図 14 より、熱伝導率が同じで Tg の異なる樹脂では、Tg が高いほど発熱チップを所定の温度にするための印加パワーが大きいことが分かれる。つまり、樹脂の熱伝導率および Tg が高いほど、大電力をかけることが可能であると考えられる。
リフローシミュレーターによる反りの確認

リフローシミュレーターは、部品、基板、および樹脂封止パッケージの膨れや反りを計測することができる。レーザー変位計により、連続測定が可能で、任意の温度でポイントを設定し、専用のソフトウェアのプロファイルの解析を行うことが可能である。

シミュレーターを使用し、開発した高熱伝導樹脂をガラエポ基板に真空加圧成型したモジュールの反りについて、計測・解析を行った。温度は、Pbフリー条件のMax温度260℃までを想定し、モジュールパッケージがどのように変形するかを確認した。

測定した樹脂の内容と硬化物特性について、表16に示した。モニターとして用いた樹脂Mは、サンユレック株式会社でモジュール封止用樹脂として量産実績のある樹脂で、シリカフィラーを78wt%充填されたものである。B～F は、2-3-1 発熱TEGチップによる熱抵抗の確認の熱抵抗測定で使った樹脂と同じものである。反りを観測する上で、樹脂の持っている物性、特に TgとCTE、弾性率'E'は、大きく関係する。

それぞれの樹脂を真空加圧成型後、リフローシミュレーターで測定できるサイズ50mmにダイシング加工をした。反り確認用テストサンプルの構造を図15に示す。成型は、樹脂ごとにそれぞれ条件出しを行い、表17の条件で行った。

<table>
<thead>
<tr>
<th>反り計測用サンプル</th>
</tr>
</thead>
<tbody>
<tr>
<td>基板：FR-4 0.3mmt サイズ：□50mm×1.1mmt</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>表16 反り計測樹脂内容</th>
</tr>
</thead>
<tbody>
<tr>
<td>樹脂</td>
</tr>
<tr>
<td>-------</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>M</td>
</tr>
<tr>
<td>B</td>
</tr>
<tr>
<td>C</td>
</tr>
<tr>
<td>D</td>
</tr>
<tr>
<td>E</td>
</tr>
<tr>
<td>F</td>
</tr>
</tbody>
</table>

表17 反り測定用パッケージのキュア条件

<table>
<thead>
<tr>
<th>樹脂</th>
<th>成型温度・時間</th>
<th>後硬化</th>
</tr>
</thead>
<tbody>
<tr>
<td>M</td>
<td>150℃・300sec</td>
<td>150℃・3Hr</td>
</tr>
<tr>
<td>B</td>
<td>130℃・900sec</td>
<td>150℃・3Hr</td>
</tr>
<tr>
<td>C</td>
<td>130℃・900sec</td>
<td>150℃・3Hr</td>
</tr>
<tr>
<td>D</td>
<td>150℃・300sec</td>
<td>150℃・1Hr+180℃・3Hr</td>
</tr>
<tr>
<td>E</td>
<td>150℃・300sec</td>
<td>150℃・1Hr+200℃・3Hr</td>
</tr>
<tr>
<td>F</td>
<td>150℃・300sec</td>
<td>150℃・1Hr+200℃・3Hr</td>
</tr>
</tbody>
</table>
反り確認は、常温に近い40℃、100℃、140℃、180℃、220℃、260℃の6種類で行った。センサーは、樹脂上の真ん中に近いところで測定しており、ヒーター上にある基板の温度は、さらに高くなっていた。測定は、5ライン測定である。

樹脂Mと樹脂Bの反り変位計測結果を、図16に、樹脂Cと樹脂Dの反り結果を図17に、顆粒樹脂Eとシアネートエステルの顆粒樹脂Fの熱時反り変位結果を図18に示す。また、それぞれの樹脂の反りMax量を図19に示す。

Tgが最も高い樹脂Fは、260℃の温度でも、反りが小さく、ほとんど反っていないように見えた。数値上も、反りは小さい値となっている。また、線膨張(CTE)の高い樹脂Bは、Tg以下でのSmile反り値が大きく、Tg以上でのCry反りの数値も最も大きい。樹脂Mと樹脂Cは、40℃では小さかった反りが、100℃では大きくなり、その後Tgを少し超えた140℃、180℃では、反りが小さくなっている。しかし、さらに温度を上げると、Cry反りが大きくなっている。これらは、後硬化時に残留していた応力が、温度をかけることで解放した結果だと考えられる。

図16 樹脂Mと樹脂Bの熱時反り変位
図17 樹脂Cと樹脂Dの熱時反り変位
図 18 樹脂 E と樹脂 F の熱時反り変位

図 19 加温時の Max 反り量
第3章 全体総括

3-1 研究開発成果

パワー半導体を混載したモジュール用の樹脂として、顔料タイプで Tg 350℃以上、熱伝導率 5W/mK 以上、液状タイプでも熱伝導率 5W/mK 以上の材料を開発することができました。

熱伝導率を高くするには、高熱伝導フィラーを効率よく充填するだけでなく、樹脂ベースの熱伝導率が高いものがさらに高充填することで、より高い熱伝導率にすることが可能でした。さらに、加圧硬化などプロセスや、特殊フィラーを使うことにより、さらに高い熱伝導率が実現することも確認できた。

発熱 TEG チップを用いて、熱抵抗の確認を行った結果、同じ印加パワーをチップにかけても、熱伝導率の高い樹脂は、熱の放熱によりチップ温度の上昇がかなり抑えられることも理解できた。

耐熱性確認では、アレニウスプロットによる TG/DTA の結果では、必ずしも高 Tg 樹脂が、耐熱性が高いという結果にはならず、Tg が低い樹脂でも、その骨格により耐熱性を高くできることがわかった。

真空加圧成型プロセスの開発により、1mm 厚以下から、3mm 厚以上まで、様々な成形品を作成することができる。

3-2 今後の課題および事業化展開

今後は、商品のニーズに合わせて、樹脂の開発だけでなく、工程も考慮した提案を行い、材料および技術の拡販に努めていく。
参考文献・引用文献

2) Okuno, et al.：“Combination technology of low warpage epoxy resin and Vacuum Printing Encapsulation System(VPES) for stacked IC”，The Fifth VLST Packaging Workshop of Japan, 2000

専門用語の解説

真空印刷封止（Vacuum Printing Encapsulation System：VPES法）
サンユレック株式会社が独自に開発した封止樹脂の塗布技術。真空チャンバーの中で印刷塗布するので、大量のモジュールに対して気泡の入らない樹脂封止層を形成することが可能である。

TEG（Test Element Group）チップ
LSIに発生する設計上の問題や製造上の問題を見つけ出す目的で作られる評価用素子。テスト構造とも呼ばれる。

QFN（Quad Flat Non-leaded package）
ICチップのパッケージ方法の一つ。QFPの外部入出用のピンが無い構造。