平成21年度戦略的基盤技術高度化支援事業

「ニッケル基耐熱超合金大型ねじの 転造加工技術開発」

研究開発成果等報告書

平成22年3月

委託者 近畿 経済 産業 局

委託先 財団法人新産業創造研究機構

	E	3	次				
第1章	研究開発の概要						
1 - 1 1 - 2 1 - 3 1 - 4	研究開発の背景・研究目的及び目標 研究体制 成果概要 当該プロジェクト連絡窓口			• • •	• • • •	, , ,	1 2 3 3
第2章	転造技術の最適化						
2 - 1 2 - 2 2 - 3 2 - 4	転造プロセス最適化の探索 転造過程のシミュレーションの高度化 潤滑油の最適化探索 転造用ダイスの耐久性の評価			• • •	• • • •	, , ,	4 16 23 26
第3章	光学式探傷装置の実証試験						
3 - 1 3 - 2 3 - 3 3 - 4	光学式探傷装置の改造の概要 解析ソフトの仕様詳細 実証試験結果 今後の課題			• • •	• • • • • •	, , ,	3 0 3 0 3 1 3 2
最終章	全体総括			•	•••	•	33

第1章 研究開発の概要

1-1 研究開発の背景・研究目的及び目標(高度化目標、技術的目標)

現在、小径ねじでのみ転造可能な加工硬化能の高いニッケル基耐熱超合金(インコネル718など:以下、 ニッケル基合金という)の太径(M80以上)について、転造ねじ加工技術(転造速度、加圧速度などを制御) を開発する。従来、切削で仕上げていた太径ニッケル基超合金ねじは、さらに高強度化・高疲労寿命化を図る べく転造ねじへの進展が望まれている。これは、省エネルギー・高熱効率の高温複合サイクル発電プラントの タービンプレードを束ねる結合部材に供するためである。

これまでの太径転造加工は、ダイスの押し込み抵抗のため変位量が飽和値に達すると手動で加圧力を増加す るのみで、加圧変動の時間制御は不可能である。さらに大型転造盤の変位精度が悪く、荷重や押し込み速度は 極めて粗い制御しかできず、最適な転造加工が不可能であった。

本研究開発では、3年間で以下の3つ大テーマを実施する計画である。

()高精度制御機器の開発:

ダイスの加圧押し込み速度、圧力、位置及び主軸の回転数の各要素を種々のパターンにて制御可能な 高精度・制御機器を開発する。

- ()転造技術の最適化:
 開発した高精度・制御機器を大型の現有100トン転造盤に付置して転造ねじ製造ラインの高度化を図る。これにより、3つの因子(新加工制御、潤滑、ダイス耐久性)を定量的に検討し、高強度のニッケル基合金(インコネル718)の太径転造ねじ製造技術の最適化を行う。
- ()品質保証技術の確立:
 転造ねじの品質保証(表面疵の有無検査等)のため、肉眼観察ではなく精度と信頼性の高い新品質検査技術を開発する。

平成21年度は、平成19年度に実施した()高精度油圧・制御機器の開発、により製作した転造制御装置を用い、()転造条件の最適化、を継続実施した。また、平成20年度に実施した()光学式探傷装置の開発、により製作した疵の画像処理ソフトを改良、使用して、ねじ転造加工後の探傷検査の実証試験を実施した。

1-2 研究体制

1)研究組織

2)管理体制

2-1)プロジェクト管理法人「財団法人 新産業創造研究機構」

2-2) 再委託先

ハマックス株式会社

兵庫県立大学

1-3 成果概要

以下に、平成21年度の各課題に関する成果の概要を示す。

- 1)転造技術の最適化
 - 1 1) 転造プロセス最適化の探索

平成19年度及び平成20年度の研究成果を基に、ハマックス㈱が、制御装置を設置した100トン転 造盤にて、ダイスの押込み速度、圧力、位置及び回転数等のプロセス条件を変えて、実機サイズの太径転 造加工試験を行った。

また、制御装置を使用しない従来法による転造加工との比較評価のため、(財)新産業創造研究機構より 提供を受けて、従来法による転造加工技術によるM80以上の大径の転造加工した比較評価用の転造ねじ を試作した。

両者の比較検討により、転造プロセスの最適化の効果を確認した。

転造加工試験により製作した転造ねじについては、ハマックス(株)にて表面疵の有無のマクロ観察を行い、 兵庫県立大学にて断面微細組織、特に転造ねじ底の局部域ミクロ組織観察を行い、それらの試験結果に基 づき最適転造条件を明らかにし、転造加工条件の最適化へ反映させた。

1-2) 転造過程のシミュレーションの高度化

転造過程を、有限要素法(FEM)を用いたシミュレーションモデル化を行い、シミュレーションを行った(計算は計算専門業者外注)。

摩擦係数、ダイス回転数、送り速度などのパラメーターを変えて転造ねじ加工過程の弾塑性接触大変形 FEM 解析結果を検討し、実体での転造加工との比較を行い、大型転造条件の絞込みを行った。

1-3) 潤滑油の最適化探索

平成20年度に評価した潤滑油をもとに改良潤滑油(極圧添加剤等の調整)を製作した。ハマックス㈱ にて、転造盤の主軸トルク値の比較、及び表面マクロ観察(ねじ底の剥離、焼付き状況等の潤滑の影響観 察)を行い、兵庫県立大学にて、内部ミクロ組織におけるき裂の有無を観察した。それらの評価から総合 的に、最適な潤滑油を選定した。

1 - 4) 転造用ダイスの耐久性の評価

制御装置を設置した100トン転造盤にて、実機サイズの製品を用い粉末工具鋼を使用したダイスの耐久性の評価を行った。また、今年度はダイスにWPC処理(ショットピーニング)を施し加工性・耐久性の評価を行った。破損したダイスについては調査(クラック形状、破面観察、内部組織観察等)行った。

2)光学式探傷装置の実証試験

平成20年度に開発した光学式探傷装置を用いて、試験材の地合と疵の判別を行う画像処理の実証試験を 実施して、検査データを蓄積するとともにソフト改良を行い、実用性の高い検査装置として完成させた。

3)工業所有権及び対外発表なし

*ч*0

1-4 当該プロジェクト連絡窓口

〒650-0047 神戸市中央区港島南町1丁目5番2 神戸キメックセンタービル 6 階 (財)新産業創造研究機構 高谷 芳明 Tel:078-306-6803、 Fax:078-306-6812 、E - mail: takatani@niro.or.jp

第2章 転告技術の最適化

2-1 転造プロセス最適化の探索

- 2 1 1) 転造実験による最適化の検討
 - 1)H19年度、H20年度の成果概要

本研究開発では、転造技術の最適化の検討 に当たり、H19年度はハマックス(株)が 所有していた汎用100tf転造盤に、ダイス 送り速度、圧力、位置及び主軸の回転を検知 し任意にコントロール可能な図2-1-1の 高精度油圧制御機器を設計開発し設置した。

また、動作確認実験により、初期の目標性能 を発揮することを確認し、本格的な転告を可 能にした。

一方、制御装置が完成しない間は、既存100tf転造 盤にて、ダイスの押込み速度、圧力、回転数等の加工プ ロセス条件を変えて、予備の転造加工試験を行った。

これらの結果を整理すると1転造前の表面祖度 Raは 細かいほうがよい.2回転数は16rpm.3押込み速度は 1mm/sが好ましい条件と判明した。

開発された高精度制御機器を用いて、インコネル71 8の転造加工が上記予備実験を考慮した条件で転造加工 が可能であることが確認できた。図2-1-2はがその 加工写真である。

H20年度は懸案であるM80相当インコネル718材の入手遅れ対策として中径ねじサイズM56 ×P5.5のSCM435(H)材を用いて、ダイス送り速度、ワーク回転数等のプロセス条件を3種類のパタ

ーンで実験を行い、転造荷 重及び主軸トルクの推移、 ねじ底の表面観察結果から 条件の絞り込みを行い、パ ターン(a)が最も好ましい ことが判った。図2-1-3は3種類パターンの変位

ワーク回転数線図である。 この試験結果に基づき

M56×P5.5のインコネ ル718材を用いて2種類 のパターンにて SCM 4 3 5材との材質の違いによる

成形性及び機械的能力の限界などの分析を行い、インコネル718材においてもこのパターンが好ましい ことが実証された。表2-1-1はその速度パターン表である。

表 2-1-1 受位速度八ターン								
パターン(a-1)	変位 0.0 1.0 1.5 2.0 2.5 3.0 3.3 3.6 3.9 4.2 4.4							
	速度 0.5 1.5 2.0 2.5 2.0 1.5 1.0 0.5 0.3 0.1							
パターン(a-2)	変位 0.0 0.3 2.5 2.8 3.0 3.3 3.6 3.9 4.2 4.4							
	速度 0.5 2.0 1.8 1.5 1.2 1.0 0.5 0.3 0.1							

次に、懸案である太径ねじ3.25-8 UNJ(82)、インコネル材による転造実験 を行い荷重900KNにて所定値に近いとこ ろまで転造できた。図2-1-4は荷重・主 軸トルクーワーク回転数線図で、図2-1-5はインコネル718材、3.25-8UNJ 転造ねじである。

2) 太径ねじ3.25-8UNJ,インコネル材と SNCM439(H)材による転造性について

H20年度では、M56にてインコネル材と SNCM材との比較検討試験を報告したが、まず、

太径ねじ3.25 - SUNJ においてもインコネル材とSNCM 材との比較をテストをした。

- 図2-1-6はその荷重、トルクーワーク回転数 線図であるが、
 - (a) ピークトルクは同程度であるが、ピーク トルク後のトルクは SNCM のほうがイン コネルより高い数値を示した。
 - (b)荷重はインコネル材が大きい、
 - (c)ワーク回転数は設定位置まで加工されるの
 にインコネル材が多く、SNCM 材が少な
 い回転数であった。
 - (d)ねじ部充満率はSNCM材100%に対し、 インコネル材は69%であった。

これは SNCM 材の加工性が良く、

インコネル材が難加工材であること を示すと同時に、転造盤自体の剛性 を含む機械的な要素も影響している ことを示していると思われる。従っ て、インコネル材の加工試験に当た ってはダイス押込み設定位置の変更 を含め、条件設定を変化させ以下の 試験を行った。

3)太径ねじ3.25-8UNJ、イ ンコネル材によるダイス押込み位置 変更による転造試験

図2-1-7は上記インコネル材よ リダイス押込み位置設定を0.35mm 増加変更したものとの比較線図で、荷 重が約800KNが900KNに増加 した。また、ねじ部充満率も69%か ら79%へと向上したがねじ部端部と 軸部では荷重が大きく違っており偏荷 重が加わっている。

4)太径ねじ3.25-8UNJ、イン コネル材による圧力制御パターンに よる転造試験

図 2-1-5 インコネル 718 太径(82)転造ねじ

本機は1000KN 高精度制御転造盤であ り、平行制御、位置制御、圧力制御の選択が 可能であり、今までは平行制御「入」にて試 験をしてきたが、ねじ部端部と軸部ではかな り偏荷重となり、一部機械性能をオーバーし ているため圧力制御パターンで、且つダイス 軸受部を変更し転造試験を試みた。

図2-1-8は平行制御を「切」、圧力制御 パターンで行った荷重、変位 ワーク回転数 線図で前軸と後軸で大きく変位差が出ている。 また、充満率は端部100%、軸部86%で あった。

5) 太径ねじ3.25-8UNJ、インコネル材に よる軸受部変更による転造試験

上記試験にて充満率は向上したが、軸受部変 更による効果が大とみて、軸受部を変更したま ま、位置制御で転造試験を行った。図2-1-9はその荷重、変位 ワーク回転数線図である が、圧力制御試験同様、充満率は、端部95%、 軸部83%と向上した。

6) 太径ねじ3.25-8UNJ、インコネル材に よる多段押し転造試験

転造加工において2回押し加工を行うと押込み 荷重の低減されるとの通説があるが、この場合、 ダイスとワークとが一度離れるため、ひげ等が発 生し易く、疲労限の低下が想定されるため、ダイ スとワークを常に接触状態にて加工する多段押し 転造を試みた。図2-1-10は3回の多段加工 を行った荷重、変位 ワーク回転数線図である。 荷重が振幅する度に加工が進行していることが確 認できた。しかし、通常の1回押し転造の場合も 一定荷重の状態で加工が進行することが知られて おり、この度の試験では荷重及び変位に顕著な差 異け認められたかったが 今後条件を種々変更し

7) 中径ねじ2.625-12UNJ、インコネル 材の転造試験

H21年度は実用化に向けた転造の最適化の 検討がテーマにあり、中径ねじ2.625-12 SUNJ、インコネル材による転造試験を行った。 転造プロセスついては太径3.25-8SUNJ、 インコネル材にて転造できたのでそのプロセス を採用することとし、太径ねじ試験にて顕在化 した、偏荷重、軸受部剛性について転造試験を 行った。

軸受間図距離は同じでダイス位置を変更した

異は認められなかったが、今後条件を種々変更して試験する価値はあると思われる。

回転数線図(3回押し)

試験も行ったが、顕著な改善は見られず、軸受間距離を短くすると大幅にねじ部充満率が向上することが

判った。

図2-1-11は従来軸受と軸受間距離を短くした転造の荷重、変位 ワーク回転数線図であるが、デ ータ上では変位にあまり違いがないが、ねじ部充満率には大きな変化がみられた。

	ねじ端部	ねじ軸部
従来軸受	93%	79%
軸間距離を短く	100%	91%

この実験により転造プロセスも大事な要素であるが、基本的な軸受強度がねじ加工の完成度を高めることが判った。

8) 中径ねじ2.625-12UNJ、インコネル 材のねじ長さ差異による転造試験

上記軸受間距離を短くし、転造プロセスは試 験結果の最適パターン即ちダイスとワークの接 触過程はゆっくり、その後ダイス送り速度を上 昇させるパターンにてワーク長さ120mmと 60mmの試験を行った。どちらもねじ部充満 率は100%であった。

図2-1-12はねじ長さ差異での荷重、ト ルク、変位 回転数の線図である。

120mmねじではピークトルクを過ぎると

荷重上昇カーブが緩やかになり、変位の進行ペースも落ちるが設定値まで、転造回転を行っている。一方、 60mm ねじではピークトルク時に、最大荷重となりトルク減少に伴い荷重は減少しているが変位はピー クトルク、最大荷重時点ですでに設定位置に到達している。

120mm ねじでは、加工途中で荷重が能力飽和状態に近づき荷重上昇カーブが緩やかになったために ピークトルクもその時点がピークとなりその後荷重の増加及び保持状態により変位は進んだもの推察でき る。また、60mm ねじでは荷重能力に余裕があり一気に設定位置まで転造が進んだため、その時点で最 大荷重、ピークトルクとなったと推察できる。

9)従来転造と最適プロセス転造とのねじ底面の比較

従来転造の転造回転数の長いものはねじ底面が最適プロセス転造と比べると図2-1-13のように面 祖度が荒い。

図 2-1-13 転造方法の違いによるねじ底の面粗さ比較

これは後述するが硬度低下及び微細組織に変化が認められ、疲労限の減少にも影響があるのではと推察する。

10)まとめ

今回、転造プロセスの最適化の検討のため、種々の上記のとおり行い以下の結論を得た。

最適な転造プロセスはダイスと試供材の接触は緩やかにし、その後押込み速度を上げるのが好ましい。 今回のインコネル材では1mm/s程度が試験したどのねじサイズにおいても良かった。

転造盤の制御は位置制御、圧力制御、平行制御などを試みたが、平行制御をしながら位置制御するのが最も良かった。

今回は既設機を改造して高精度制御転造盤を開発し試験を行ったが、転造盤自体の剛性、特にダイス軸 強度の剛性が大きな加工要素であることが顕在化した。

最後に、別途今回の最適プロセスにて加工した小径ねじと切削ねじ疲労試験をしてみたが、切削ねじに 比べ疲労限で2倍以上、疲労回数で10倍以上の結果が出ていることを報告してまとめとする。

2 - 1 - 2) 微細組織解析

製造技術の最適化を図るた めの3つの因子「新加工制御」、 「潤滑」、「ダイスの耐久性」の 中で、加工制御は歪速度と歪量 を変化させるものであり、潤滑 剤はこれらに影響を及ぼし、い ずれも結果的に変形組織も含め た意味においての微細組織を変 化させる。歪量は硬度測定で把握

図 2-1-14 SEM - EBSD 法による (

(a) ねじ底部、 (b) ねじ底から離れた部分

できる。 歪を含む 微細組織の評価は、 これまでの手法では困難であった。 比較的最近の手法である SEM(走 査電子顕微鏡) - EBSD(後方散乱電子回折)法の特長は、 歪の情報が重畳した組織写真を示し得ることで ある。

図2 - 1 - 1 4 (a)にねじ底部の結晶方位マップ(IPF マップ)を示す。(b)に示したのはねじ底から離れた 部分の IPF マップである。(b)中に示した標準ステレオ三、角形の色に従って結晶粒の方位を色で示している。

(a)では黒で示された部分が多い。また、色で示された結晶粒も見られるが、色のグラデーションがあり、歪を含む結晶粒であることを示している。黒い部分はさらに歪が多く、方位解析不能な部分である。この黒い部分については後述するように硬度と対応させることができる。製造条件のうち、成形終了までの回転数を変えて作製した試料のねじ底部の IPF マップを図2 - 1 - 15 に示す。(a)の試料は164回、(b)は39回の回転でねじを形成した。図中に白矢印で示すように、上記歪が多いために黒く表示される部分が、(a)では

図 2-1-15 成形終了までの回転数の異なるねじの微細組織 (a) 回転数164 (試料JT-1)、(b) 回転数39 (試料T-7)

ねじ底から約0.5 mm、(b)では約1.2 mmの深さまで及んでいる。素材のインコネル718の降伏強 度は約1200 MPa、引張り強度は1650 MPaとする報告があり、加工硬化が比較的大きい材料であ る。強度は微細な規則相析出物による析出強化である。変形を繰り返し被ると析出物が転位に切断されて軟 化することをH20年度に報告した。回転数が多い場合には軟化によって変形が深部に及ばないのに対して、 回転数が少ない場合には加工硬化が内部にまで進行すると考えられる。このような加工法の差が推測される ことが、EBSD 法の利点である。しかし、IPF マップで示されるのは、歪量の定性的な情報である。一般的 な手法であるが硬度測定は貴重なデータである。 図2-1-16にJT-1の ねじの断面のマイクロビッカー ス硬度測定を行った結果を示す。 ねじの底部およびねじ山からや や内部寄りに硬度の高い部分が 形成される。ビッカース硬度の 値は引張り強度(単位を kg/mm ²とした値)のおおよそ3倍であ るとされる。図2-1-16の 最高硬度は520程度であるの で、およそ1700 MPaの強

度に対応し、上に引用した引 張り強度、1650 MPa 程

図 2-1-16 JT-1 のねじ部の硬度分布とそれに基づく等硬度線

度まで加工硬化が進んでいることが判る。

本研究開発の大きなテーマは、ダイスの押し込み速度などの加工諸要素を制御して転造を行うことであった。

図 2-1-17 微細組織におよぼすダイス送り速度の影響

(a) 一定送り速度:1 mm/s (試料4A)、(b) 0.3→0.5→1.0 mm/s (試料4B)

図2-1-17に、ダイス送り速度を変化させた際の微細組織の変化を示す。(a)は従来通りに一定の送り 速度で成形されたねじの断面である。黒矢印でねじの底を示す。一方、(b)は多段で送り速度を変えて成形し たねじの断面である。ねじ底に形成される歪の多い部分は、図中に白矢印で示すように、いずれのねじにお いても同程度の深さまで及んでいる。しかし、(a)では白矢印よりも深い位置までグラデーションを伴う結晶 粒が観察され、さらに深部には矢印で示す範囲に再び歪の多い領域が観察される。

図2-1-16から推測したように、加工硬化が内部にまで及びやすいのは急速な加工により歪速度が大 となる場合である。送り速度を一定にするとダイスと接する面での塑性流動が不十分なままの成形となるの

図 2-1-18 種々の潤滑剤を用いて作製したねじの微細組織 (a) SRH 8 - 3 (試料 7 A)、(b) SRH - 3f(試料 7 B)、 (c) SRH 8 0 - 3h(試料 8 A)、(d) SRH 1 5 4 - 2b(試料 8 B)

で、硬化部が内部に進行するのに対して、初期の送り速度を低くすると、塑性流動によって硬化部が山側に 流れて、新鮮部が加工を受けるため、歪の多い領域が浅くなるものと考えられる。

ダイスと接する面での塑性流動は、潤滑剤の特性によって左右される。後述の2-3で潤滑剤の特性が示 されるが、ここでは数種類の潤滑剤を使用して作製したねじについて、EBSD 測定を行った結果を示す。

図2-1-18は、4種類の潤滑剤を使用し、その他の条件は一定として作製したねじの微細組織である。 黒矢印でねじ底を示す。歪の多い領域の深さを白矢印で示す。潤滑剤の特性によって加工硬化領域の深さが 変化することが明らかとなった。

SEM - EBSD 法はこれまでに述べてきたように、種々利点があるが、一般的な手法ではない上に、測定 領域が狭い。手軽に定量値が得られる硬度測定との対応を得ておく必要がある。

図2-1-17に示した試料4A、4Bについて断面の硬度分布を示す。図2-1-17のIPFマップも 再度示した。(a)は歪の大きい領域が深い4Aである。太い波線で示したのはビッカース硬度500である。 4Aでは硬度は2.5 mm以上の深さまで500以上の値を示した。一方、試料4Bでは(b)に示すように ねじ底の直下およびおよそ0.7 mmの深さの部分に硬度500以上の部分があり、ねじ底直下の部分は 細い波線で示したようにIPFマップで方位解析が不能な領域にほぼ一致している。HVが500となる領域 は、図2-1-16に示したようにねじの谷底直下と山の部分のやや深い位置に形成されている。絶対値の 500に特別な意味はないが、インコネル718においては、上述のように引張り強度に相当する加工硬化 を受けた領域に対応する。

図 2-1-19 図 2-1-17 に示した試料の硬度分布 (a)試料4A、(b)試料4B

図2-1-18に示した潤滑剤を変えて製造したねじについての硬度分布を図2-1-20に示す。それ ぞれのIPFマップを、位置を揃えて示した。太い波線は図2-1-19と同様に硬度500を示し、細い波 線は方位解析が困難な領域を示す。やはり硬度がおよそ500を超える領域でIPFマップが黒くなっている。 以上から得られた新たな知見は、ねじ製造の条件のうち、成形終了までの回転数、ダイス送り速度、潤 滑材のいずれを変えてもねじの塑性変形の状況が変わり、著しい加工硬化を被る領域の面積が変化するこ とであり、簡便に硬度分布を測定すれば硬化領域の概略を把握できることである。SEM - EBSD 法はそ の分布を詳細に示すことができるが簡便な手法ではない。

10

図2-1-16に示した JT-1の試料について、IPF マップの組写真を図2-1-21に示す。図中に 白矢印で示した黒い部分は焦点外れの部分であり、歪の多い部分ではない。それを除けば概略、硬度分布と 一致し、ねじの底部直下、および山部からやや内部に歪の大きい領域があり、側壁に歪の少ない領域がある。 歪の多い領域が約1700 MPaの強度まで加工により硬化しているとするのは硬度測定の結果を合わせた 知見である。

図2-1-21 JT-1のねじ部の IPF マップ

図 2-1-22 10⁶回の繰り返し応力負荷で破断した試料の破面。

最終的にねじに問われる機械的特性は疲労強度である。本研究課題のねじは、太径であるため、SEMの 試料室に入りきらず、疲労破壊の状況を観察することはできないので、同じインコネル718製の小径(20 mm)のボルトについて疲労破面などの観察を行った。同サイズのボルトで、一方はダイスの送り速度 を一定として製造したものであり、他方は送り速度を徐々に増加して製造したものである。前者については 2本の試料について疲労試験を行った。そのうちの1本は10⁴回で破断し、他方は10⁷サイクルまで破断 しなかった。送り速度を制御して作製した後者は10⁶回で破断した。

図2-1-22に後者の破面を示す。図中Aで示す破面は高倍率象に示されるように疲労破面であり、B の破面は延性破面である。延性破面は試料破断時に形成されたものである。疲労クラックの起点は試験中に 磨滅しており介在物等の異物は探しえなかった。Cで示す部分はねじの山であり、クラックが底部近傍を貫

通して山部が剥離している。

C で示した山側から見た状況を図2 - 1 - 2 3 に示す。ねじの谷部の中心近傍を破線で示した。疲労クラックは谷の最凹部ではなく、側壁部に近い位置で発生している。

図 2-1-23 図 2-1-22 に示したボルト破断部とねじの谷と山

図 2-1-24 図 2-1-23 に示した部分の裏側。白矢印はクラック

図 2-1-25 10⁷回で破断しなかったボルト

図2-1-24に図2-1-22の延性破面側からみた状況を示す。図中白矢印で示す部分にクラックが 観察される。谷の最凹部で発生している。このボルトは前述のようにダイス送り速度を制御して製造したも のであり、図2-1-19(b)あるいは潤滑剤の種類に依存して図2-1-20のような硬度分布になっ ていると推測される。ボルトの径が異なることなど、他の条件が同じではないので即断はできないが、谷底 近辺の硬度分布が疲労強度に影響を及ぼしていると考えられる。

送り速度一定としたボルトのうち、10⁷回の繰り返し負荷で破断しなかったボルトの観察結果を図2-1-25に示す。白矢印でクラックを示す。いずれも谷の最凹部から側壁側にずれた位置で発生している。 図2-1-17(a)および図2-1-19(a)に示したように、送り速度一定の場合には谷底から深い位置まで 硬度が高い。

図2-1-26に図2-1-16の測定結果から推測される硬度分布と、疲労試験の応力分布を推察した 模式図を示す。ねじの側壁部に硬度が低い領域があること、および疲労試験の応力が谷底近傍で極大値とな ることに大きな間違いはないと思われる。図2-1-27 (a), (b)に谷底の硬度が十分に高いねじ、および硬 度が不十分な場合について、疲労試験時の応力分布と硬度分布の模式図をそれぞれ示す。

谷底近傍の硬度が十分に高い場合には、(a)に示したように応力のピーク値は硬度、すなわち変形強度を下回るため、谷底でのクラック発生が抑制される。この場合には、図(a)中にAで示した位置で応力が硬度を上回り、疲労クラックが形成されるが、応力の絶対値はピーク値よりも低いため、高疲労強度となる。クラックの位置は谷底から離れて側壁部になる。図2-1-25の状況である。

一方、何らかの原因でねじの谷底の硬度が不十分な場合には、(b)に示すように疲労変形の応力が硬度を上回り、谷底の凹部の応力が最大の部分でクラックが発生する。応力が高いため低疲労強度となる。クラックの位置は最凹部から側壁であり、図2-1-24の状況である。

図 2-1-26 ねじの硬度分布と疲労試験の応力分布の模式図。

ダイスの送り速度一定で作製したボルトの疲労強度がばらつくことを既述した。速度一定としたが、あく までも機械的な制御にすぎず2本のボルトの成形速度が異なっていたため加工硬化の状況が変化し、強度に ばらつきが生じたと考えられる。これまでに示してきたことをまとめると、以下のようになる。ねじ成形ま での回転数、ダイスの送り速度、潤滑剤、いずれもねじの硬度分布に影響を及ぼす。これら3要素は本研究 課題の骨子であり、これらを自在に制御できるようになった。ここではねじの成形性向上のために高精度制 御を目指してきたが、今後は疲労強度を向上させるために、ここで実現できた制御機構を有効に生かしてい くことができるのである。指標となるのは硬度分布であり、これを EBSD 測定の結果得られる歪量の分布と 対応させることによって適正な製造条件および高疲労強度を得ることが可能であることが明らかとなった。

太い実線は硬度分布、太い破線は応力分布、細い破線は応力最大レベル、 黒い大きな矢印は谷底部の硬度低下を示す。

2-2 転造過程のシミュレーションの高度化

1)目的

本数値解析の目的は、ニッケル基耐熱超合金であるインコネル718を素材とする大型ねじの常温での転 造加工プロセスを、有限要素法も用いてシミュレートすることにより、素材の変形状態、ねじ各部の応力や ひずみの状態を明らかにするとともに、加工加重の推移を調査し、転造ダイスや転造盤への負荷を解明する ことである。工具の転造時位相ずれ、素材の駆動方式、工具回転数と送り速度、素材端面の面取角度等がね じの転造加工性におよぼす影響についても調べ、インコネル718大型転造ねじの加工実験に対する補完お よび最適化に寄与するものである。

- 2)解析方法
 - 2 1) 解析対象と解析コード

ねじ転造による塑性加工の工程を解析対象とするが、具体的内容や考慮すべきパラメータは以下の通りである。また、使用コードは予備検討の結果 ABAQUS/Explicit (動的陽解弾塑性有限要素法)と simufact.forming (静的陰解弾塑性有限要素法)の2種類とした。

ねじ転造工程 製品ねじ形状 :呼び径3.25インチ(82.55mm) ピッチ3.175mmのUNJねじ ワーク素材 :インコネル718時効処理材 ・工具の転造時位相ずれ ・素材の駆動方式 ・工具回転数と送り速度

- ・素材端面の面取角度
- 2 2) ABAQUS/Explicit での解析モデルと条件

図2-2-1 解析対象となる2丸ダイスによるねじ転造概略図

図2-2-1に実際のねじ転造状態と本報で成形対象とした大型ねじの転造モデル概略図を示す。基本 的な転造条件として、左右両ダイスの回転速度は16 rpm、送り速度は0.5 mm/sec である。実機で のねじ転造では、同図の右側のダイスのみがワークの半径方向に押し込まれるが、解析では境界条件を簡 略化するために左右両側のダイスが同期回転しながら同一速度で押し込まれることとした。ただしモデル の大きさは、計算時間を短縮するために軸方向に3ピッチ分とし、ねじのリード角は簡略化のため考慮し ないこととした。また、過去の研究より加工速度を500倍することによる影響がほとんどないことが検 証できたため、計算時間を短縮するため加工速度を500倍して解析した。加工速度を500ワークは外 径40.2435 mmの円柱状試料で、弾塑性体であり、8節点6面体アイソパラメトリック選択低減 積分アワーグラスコントロール要素によりメッシュ分割した。総節点数は約28万7千個、総要素数は2

7万2千個である。 図2 - 2 - 2を参照。

拘束条件として、ワーク上下面の全節点とダイ スの回転中心(これはモデル内で参照節点でもあ る)の軸方向変位をゼロとした。変位条件として、 ダイスの回転中心の軸周りと半径方向に所定の強 制変位を与えた。接触条件はダイスとワークの間 に定義し、接触界面における摩擦はクーロン摩擦 を仮定した。一般に十分に潤滑油を供給されなが ら転造が行われる境界潤滑状態での摩擦係数はµ =0.05~0.2程度とされているので、過去 の解析を考慮し0.1を仮定した。

図 2-2-2 ABAQUS/Explicit の有限要素モデル

ワーク材料はインコネル718の時効処理材である。解析に用いるための、インコネル718の引張試 験より求めた実際の応力 - 塑性ひずみ関係を図2-2-3に示す。また、解析で用いたおもな材料定数を 表2-2-1に示す。

表2-2-1 インコネル718時効処理材の材料定数								
ヤング率	降伏応力	引張強度	ポマンクル	密度				
[GPa]	[MPa]	[MPa]	ハアンフレ	[kg/mm ³]				
200	1200	1653	0.3	8.220x10 ⁻⁶				

図 2-2-3 インコネル718時効処理材の応力 - 塑性ひずみ曲線図

2 - 3) simufact.forming での解析モデルと条件

ABAQUS/Explicit と同じく境界条件を簡略化するために左右両側のダイスが同期回転しながら同一速 度で押し込まれることとした。またダイスとワークの形状もほぼ同じである。計算時間を短縮するために 軸方向に4ピッチ分とし、ねじのリード角は簡略化のため考慮しないこととした。ワークは外径40.2 435 mmの円柱状試料で、弾塑性体であり、6面体要素によりメッシュ分割した。図2-2-4を参 照。 拘束条件として、ワークを抑えるピンとダイ スの回転中心の軸方向変位をゼロとした。変位 条件として、ダイスの回転中心の軸周りと半径 方向に所定の強制変位を与えた。接触条件はダ イスとワークの間に定義し、接触界面における 摩擦はクーロン摩擦の0.2を仮定した。

ワーク材料は ABAQUS/Explicit で用いたものと同じ、図2-2-3と表2-2-1に示した応力 - 塑性ひずみ関係と材料定数を解析で用いた。

実際の転造加工実験では転造盤の容量不足のため、 送り量が大きくなるほどダイスの送り速度が減速し ていく。それを再現するため、ABAQUS/Explicit と simufact.forming のモデルにおけるダイスの送 り速度に図2 - 2 - 5に示すような時間依存性を持 たせた。

3)結果と考察

3 - 1) ダイスの転造時位相ずれの影響

インコネル718は超難加工材であるため転造盤 は100tを超える大型転造盤を使用するが、10 0tクラスのCNC大型転造盤がないため人の目に よりダイスの位相を合わせている。そのため、どん

図 9-9-4 cimufact forming の右限亜表エデル

図 2-2-5 ダイスの送り速度の時間推移

なに正確に合わせたとしても約30µmのずれが生じ、また加工中ダイスに負荷がかかり約100µmの ずれが生じることがあるので、図2-2-2に示した2つのダイスの向かい合うねじ山の重なる位置を軸 方向に上下に30µm、100µmずらし、位相ずれを再現してひずみ量と転造加工性への及ぼす影響に ついて調べた。ダイスの送り速度は図2-2-5の1回転を用いた。

μm (b) 30μm (c) 図 2-2-6 位相ずれの比較(ねじ表面の相当塑性ひずみ)

図2 - 2 - 6 は相当塑性ひずみのねじ表面分布を代表的成形段階でまとめて比較したものである。これ らの図より、位相ずれが大きくなるほどねじ溝の相当塑性ひずみが大きくなっていることがわかる。これ は、図2 - 2 - 7 に示すように一方のダイスのねじ頂部によって転造されたワークのねじ溝が、半回転し て接触するダイスのねじ頂部とずれていることで、成形されていたねじ溝が最初に転造されたねじ溝を基 点にそのずれた分だけ押し広げられ、新しくねじ溝を転造されるのでその位置で変形量が極めて大きくな るから位相ずれが大きくなるほどひずみ量が大きくなるためである。

図2-2-8は転造時ダイスにかかるトルクの推移を送り量により示したものである。位相ずれが大き くなるほど新しくねじ溝を転造する量が大きくなるため、一回当たりの加工量が大きくなるためトルクが 大きくなることがわかる。

図 2-2-7 位相ずれによるねじ谷の転造状態

3-2) ワークの駆動方式の影響

現状ではセンター支持され自由駆動の状態にあるワークを、ウォームやボールねじなどのようにワーク を強制駆動させた場合についてシミュレートし、ワークの駆動方式がねじ溝の相当塑性ひずみ量や加工荷 重におよぼす影響を調べた。本解析では駆動方式の異なる5種類のモデルを用意し、各モデルにつき比較 した。モデル1はワークを自由駆動させた場合である。モデル2、3、4は各々ワークの回転速度を転造 加工により随時成形されるねじの谷部、有効径部、および頂部でダイスの回転速度と一致するようにした 場合である。またモデル5は途中まで頂部一致で、その後自由駆動するようにした場合である。ダイスの 送り速度は図2-2-5の1回転を用いた。

図2-2-9はねじ表面での相当塑性ひずみ分布を、代表的成形段階において比較したものである。モ デル1と比べモデル2は谷部でメッシュが壊れるほど大きな変形をおこしているが、モデル3、モデル4、 およびモデル5ではモデル1と比べて、大きな差異が見られない。

図2-2-10は転造時ダイスとワークにかかるトルクの推移を送り量により示したものである。モデル2では、自由駆動に比べダイス側のトルクが小さくなり、ワーク側のトルクが大きくなる。モデル3では、ダイス側のトルクはモデル1のトルクと近い値になり、ワーク側のトルクがゼロに近い値になる。モデル4では、ダイス側のトルクがモデル1と比べ大きくなり、ワーク側のトルクはマイナスの値をとる。 モデル5では途中までモデル4と同じだが、自由駆動にした後はモデル1や3とよく一致する結果になる。 これらのことから、トータルエネルギー的にはモデル3がもっとも望ましいと思われ、また加工当初にお けるダイスとワークの滑りがないので、自由駆動よりスムーズに加工できると見受けられる。

3-3) ダイス回転数と送り速度の影響

ダイスの回転数と送り速度が成形されるねじ溝表面層の相当塑性ひずみ量や加工荷重に与える影響について調べた。ここでは、ダイスが2回転後(ワーク約6回転後)3回転後(9回転後)および4回転後(12回転後)各々加工が終了する3種類のモデルを作成した。その時のダイスの回転数と送り速度の関係を図2-2-5に示す。

図2-2-11はワークに5つ成形されるねじ溝のうち、ワーク端部から3つ目のねじ溝を拡大し、その位置におけるねじ表面での相当塑性ひずみ分布を代表的成形段階において比較したものである。加工終 了までのダイスの回転数が増加するにつれ、成形されるねじ溝表面層の谷部、斜部、および頂部全ての位 置での相当塑性ひずみ量が大きくなっている。これは加工回数が増えるほどダイスとの接触回数が増し、 表面層の材料だけが繰り返し厳しいせん断変形を受けるためである。図2-2-12は転造時ダイスにか かるトルクの推移を送り量により示したものである。加工終了までのダイスの回転数が多いモデルほど、 図2-2-5に示したように送り速度が減速するので、ダイスの一回当たりの加工量が小さくなり、その ためトルクが小さくなる傾向にあるが現実の加工上問題となるような大きな差はない。

図 2-2-12 トルクの比較

3 - 4) ワーク端面の面取角度の影響

ワーク端面より1.5875mm(製品ねじ半ピッチ分)離れた位置からの面取角度を5°、10°、および15°とした3種類のワークについて転造シミュレーションを行い、ワーク端部の形状がねじ溝の成形状態や加工荷重におよぼす影響について調べた。ダイスの送り速度は図2-2-5の4回転を用いた。

図2-2-13はワークに5つ成形されるねじ溝のうち、ワーク端部から3つ目のねじ溝を拡大し、その位置におけるねじ表面での相当塑性ひずみ分布を代表的成形段階において比較したものである。ワーク 端面の面取角度が15°、10°、5°と小さくなるほどねじ溝の相当塑性ひずみが小さくなっている。

図2-2-14はダイスを最終加圧位置まで押し込んだときのワーク端部の伸びを比較したものである。 面取角度が15°、10°、5°と小さくなるほどワーク端部の伸長が大きいことがわかる。

ワーク端面の面取角度が小さいほどワーク端部が早い成形段階でダイスのねじ山に接触してしまい軸方 向への伸びを妨げ、材料が赤矢印方向に押されて緑矢印方向のダイスねじ溝に流れにくくなり、ダイスの ねじ溝への材料の充填率が悪くなる。これが隣り合うダイスのねじ溝への材料の流れにも影響するため黄 矢印方向に流れにくくなり、全体の充填率が悪くなる要因となる。そのため図2-2-13でワーク先端 の面取角度が小さくなるほどねじ溝の相当塑性ひずみが小さくなった。

時間

(a) 5 ° (b) 10° (c) 図 2-2-13 面取角度の比較(ねじ表面の相当塑性ひずみ)

(a) 5 °

図 2-2-14 ワーク端部の伸びの比較

- 4)結言
 - 4 1)ダイスの転造時位相ずれの影響

ダイスの位相ずれを0µm、30µm、100µmとして解析を行い、それが転造加工性におよぼす影響 を調べた。結果を総合的に判断すると、位相ずれが大きくなるほどねじ溝でのひずみ量が大きくなり、ダ イスに働くトルクも大きくなるという現象が確認できた。

4-2) ワークの駆動方式の影響

ワークを強制駆動させると、ワークとダイスの回転速度の関係によって、ダイスに働くトルクが大きく 異なることがわかり、トータルエネルギー的にはダイスの回転速度と有効径部でワークの回転速度を合わ せたモデルがもっとも望ましいと思わる。また加工当初におけるダイスとワークの滑りがないので、自由 駆動よりスムーズに加工できると見受けられる。

4-3)ダイス回転数と送り速度の影響

加工終了までのダイスの回転数が増加するに従い、ねじの転造加工中ダイスに働くトルクが小さくなる ことが確認できた。しかし加工回数が増えるほどダイスとの接触回数が増し、表面層の材料だけが繰り返 し厳しいせん断変形を受けるため成形されるねじの谷部、斜部、および頂部全ての位置での相当塑性ひず みが大きくなる。

4-4)ワーク先端の面取角度の影響

面取角度が小さいほどワーク先端の伸長が大きくなることが確認できた。また伸びた先端がダイスのね じ山に接触し半径方向に押し込まれることにより、ダイスのねじ溝に材料が流れにくくなるため、完全に 充填しにくくなるという現象も確認できた。

2-3 潤滑油の最適化検索

1)目的と概要

本研究は、現状転造加工用潤滑油といったカテゴリーは無く引抜き加工油、プレス加工油などで代用され 転造加工が行われてきたが、ニッケル基耐熱超合金などの難加工材の転造加工を行う上では、延性の限界を 超えてメタルフロー組織に断層を生じたり、ねじ底の表層面が剥離するなどの原因で疲労強度が低下し折損 に繋がる危険性があると考えられる。

これらの危険性を回避する為に、平成19年度の研究では今まで使用していた潤滑油に新たに9種の油剤 を加えた10種でラボ評価実験を行った結果、4種に絞込み転造盤にて実機評価を行った。その上でさらに 2種の油剤へと絞り込んだ。

次いで平成20年度では前年の研究で絞り込んだ2種の油剤の極圧添加剤含有量を調整した改良油剤3 種にてラボ評価実験・実機評価を行い更なる油剤の絞込みを行った。

今年度は油剤の動粘度を変更しラボ評価実験・実機評価を基にニッケル基耐熱超合金の転造加工における 最適潤滑油の検索を行った。

2) ラボ評価実験

ラボ評価実験では、昨年度評価した SRH 8 0 - 3 f の低粘度 2 種と SRH 1 5 4 - 2 b の低粘度 1 種に、 新たに硫黄系極圧添加剤を含む AH - 8 0 - 3と塩素系極圧添加剤を含む SDHT 4 0 6 0 を加えた 5 種の油 剤を用い、図 2 - 3 - 1 に示すバウデンレーベン型試験機にて往復動摩擦試験を行った。潤滑油剤は表 2 -3 - 1 に、試験条件は表 2 - 3 - 2 に示す。

тар	丧争			SRH80-3 f	SRH80-3 f	SRH154-2 b
坝口	キロ	Ап-о0-3	SDH14000	(低粘度01)	(低粘度02)	(低粘度)
40	mm 2/~	79.00	90.66	44.09	49.50	40 54
動粘度	11111 ~/S	12.08	80.00	44.92	42.30	40.34
100	mm 2/a	19.94	10.42	7 509	7 070	0 107
動粘度	11111 ~/S	12.34	10.43	7.592	1.373	8.127
酸価	mgKOH/g	0.27	0.71	0.37	2.46	2.19
密度	g/cm ³	0.9469	0.9359	0.9491	0.9514	0.9504
引火点		162	218	164	164	166

表2-3-1 潤滑油剤一覧

図2-3-1 バウデンレーベン型試験機 (Aは試験片近傍拡大図) 表2-3-2 往復動摩擦試験条件

試験機	バウデンレーベン型
材料	Inconel 600
ボール	SUJ-2 (3/16inch)
荷重	5 kgf (Pmax = 2787MPa)
摺動速度	20 mm/s
摺動距離	50 mm
温度	22
油剤塗布方法	刷毛塗り

図 2-3-2 往復動摩擦試験結果

図2-3-2に往復動摩擦試験の結果を示す。昨年度のシミュレーションの結果において摩擦係数が0. 15付近に表面剥離を抑制できる最適値が存在すると考えられ、その数値に近いSRH80-3fが有効では ないかと考えられる。

この結果を得て100tf転造盤を使用し、ねじ転造加工にて実機評価を行うこととした。

3) 実機評価

ラボ評価を行った5種の油剤のうちSRH80-3f(低粘度01)を除く4種の油剤を使用し、100tf 転造盤にて実機評価を行い、加工後のねじ谷底の表面観察と加工データを基に最適油剤を見出す事とした。 図2-3-3に各油剤で転造加工したインコネル718のねじ谷底表面写真を示す。図2-3-4にトルク アーム係数-変位線図を示す。

図2-3-3 ねじ谷底表面観察写真 (材質:インコネル718、ねじサイズ:2.625-12UNJ) 0.250 AH-80-3 SRH154-2b(低粘度) SRH80-3f(低粘度) 0.200 **DSHT4060** ル ク 0.150 ア 材質: インコネル718 ム 0.100 Munu 係 ねじサイズ: 数 2.625-12UNJ 0.050 0.000 0 0.5 1 1.5 変位(mm)

図 2-3-4 トルクアーム係数 - 変位線図

ねじ谷底の表面観察では、表面が荒れたように見られるがこれはWPC処理を施したダイスで転造加工を 行ったため、ダイス表面のマイクロディンプルが転写されたものである。転写されたマイクロディンプルの サイズは油剤によって差異は無く、表面が剥離した様子も見受けられなかった。

また、トルクアーム係数においても特出した差異は認められず加工誤差範囲内の違いかと思われる。

しかし、県立大学において SEM - EBSP 測定、マイクロビッカース測定を行った結果では SRH 8 0 - 3 f(試料7B)が、ねじ谷底の歪が少なく加工硬化の影響が低いことが判った。

ラボ評価、実機評価、ミクロ観察、シミュレーションの結果よりSRH80-3fがインコネル718の太型ねじ転造加工用潤滑油として非常に有効であることが判ったが、出来うる限りの改良を加え更なる最適化を目指し今後も評価実験を続けていくことが必要かと思われる。

2-4 転造用ダイスの耐久性の評価

1)目的

大型転造ねじ、特にニッケル基合金のような高強度材を加工する際には、ダイスの破損や亀裂が発生する ほどの負荷がかかる。ダイスの高寿命化は、製品の安定成型とランニングコストに大きく関与する為に研究 の必要がある。

平成19年度の研究において、粉末ハイス鋼と溶製合金工具鋼の2種の鋼種を用いて耐久性の高度化を図 り、粉末ハイス鋼を用いた転造用ダイスの優位性を見出した。続く、平成20年度の研究では、SPM23・ SPM30・SPMR8の3種の粉末ハイス鋼を用いて転造用ダイスの耐久性の評価を行いSPMR8に絞り込 んだ。

今年度は、絞り込んだSPMR8で製作した転造用ダイスを評価実験に用いて、破損したダイスについては 調査を行った。また、SPMR8と同等鋼種のHAP10を用いた転造用ダイスでの比較実験と、SPMR8の 耐久性向上の為WPC処理を施したダイスで評価実験を行った。

2) SPMR 8 ダイスの破損調査

昨年度の研究では、SPM23・SPM30・の2種の粉末ハイス鋼を用いた転造ダイスは、亀裂が発生し 原因の推察と亀裂形態の分類を行った。SPMR8においては昨年度の実験では破損しなかったことから今年 度も引き続き評価実験を行った結果、破損したダイスについて破損形状・内部組織観察等の調査を行い破損 原因の考察を行った。

図2-4-1に破損ダイスの全景を、図2-4-2に破損部の拡大を示す。図2-4-3の亀裂形態は、 平成20年度成果報告書36ページの「図2-4-2 発生したクラックの形態」より、負荷時に被加工材 の端部に相当しダイスとの接触が均等でない為に起こりやすい TypeC に相当すると思われる。

200 µ m

図2-4-2 枠部の割れは表面観察結果によると、ダイスねじ底を通り12~13mmのピッチで、ダイス山頂部を超えて後面側に達していた。

断面ミクロ組織観察によると、割れはダイスねじ底近傍から直線的に内部へ進展しており、割れ伝播部は 塑性変形をほとんど伴っていなかった。ダイス側面部に負荷された過大な荷重が起因となって静的に割れた ものと推測される。(ただし、割れ位置がワーク端部相当位置であり非定常状態であること、及び割れピッチ に周期性がみられたことから、加工中の荷重の急な変化による衝撃的な割れの可能性もある)

マイクロビッカースによる硬度測定結果は、ダイス山頂部の硬さは約800HV(797~808HV)であ り母材硬度とほぼ変化は無かった。

枠部の割れはワーク端部より3山程度手前の位置で発生した欠けであり、ダイス山頂部が欠け落ち失われていた。欠け落ちた頂部は組織観察写真より塑性変形している事が判った。硬度測定結果は、塑性変形に伴い頂部先端の硬さは約850HVに高くなっていたが、その内部側では800HV程度だった。

欠けの原因は、ダイスねじ山両側面から発生した割れが繋がって欠けに至ったものと推定。(歯底側に割れている箇所あり)

3) HAP10での転造実験

SPMR8との耐久性比較として手持ちの粉末ハイス鋼ダイスであるHAP10を使用し転造実験を行った

結果、SPMR8は両端ねじのテストピースを4本加工し 8箇所目で割れが発生したのに対し、HAP10は同形状 のテストピースで7箇所目まで加工したが目視では割 れ・欠け等は観察されなかった。しかし、加工したテス トピースを見ると一部ねじ山に変化が見られ、ダイスの 形状を調べてみるとねじ山が変形していることが判った。 テストピースより変形は1箇所目加工終了時には発生し ていたと思われる。

断面観察の結果、山部が一方向に倒れているような変形であり、目視では発見出来なかったが谷部にはクラックが見られた。

図 2-4-5 実験後の HAP10 外観

 ・硬度測定では変形が見られない正常部で780HV前後であり、変形した部位では深さ1mmの箇所で7
 33HV と硬さが低く SPMR 8 製ダイスでは820HV 前後の硬さがあったのに対し、HAP10の方が約9
 0HV 低かった。

ミクロ組織は、炭化物が分散したマルテンサイト組織であり、特に異常は認められなかった事から HAP 10製転造ダイスの変形原因は, IN 7 18転造中に硬さ不足により塑性変形したためであると考えられる。

 衣 2-4-2	「NAP」の別面ミクロ観奈紀未	
		正常部

4) WPC 処理を施した SPMR 8 の評価実験

SPMR8の耐久性をさらに向上させる為に自動車部品や歯車等で実績のあるWPC処理をダイスに施し 転造実験を行った。

WPC 処理を施すことにより、ねじ研削時に発生したダイス表面の引張応力を圧縮応力(表2-4-3に 測定値を示す)に変えると共に、残留オーステナイト組織をマルテンサイト組織化(図2-4-8の表層が 白く変化している)し高硬度で靭性のある組織が得られた。

図 2-4-7 WPC 未処理ミクロ組織

図 2-4-8 WPC 処理後ミクロ組織

	祝Z - 4 - J	心,国次"Чロビイ		上的木			
試料名	測定深さμm	MPa	1				
WPC 未処理	0	-32.46	±	3.22	-318	±	32
	10	-2.34	±	5.37	-23	±	53
	20	4.07	±	4.47	40	±	44
	30	10.38	±	7.76	102	±	76
	40	-1.88	±	4.18	-18	±	41
	50	-1.02	ŧ	6.36	-10	±	62
WPC 処理後	0	-135.06	±	7.44	-1324	±	73
	10	-76.34	±	4.25	-748	±	42
	20	-8.16	±	5.18	-80	±	51
	30	-8.05	±	10.88	-79	±	107
	40	-7.97	±	3.28	-78	±	32
	50	-7 54	+	641	-74	+	63

表 2 - 4 - 3 内部残留応力測定結果

5)まとめ

符号:-は圧縮を示し、+は引張を示す。

本年度の成果として、ニッケル基超合金の転造においてダイスの変形を防ぐには、ダイス硬度としては7 80HV以上が必要となり、WPC処理を施すことにより未処理のSPMR8ではテストピース4本でダイス が破損したが、処理後は8本加工後もダイスに異常は見られず、WPC処理を施すことにより耐久性の向上 を得られる事が確認できた。

また WPC を行った事でダイス表面に出来たマイクロディンプルにより、潤滑油の潤滑性向上がダイスの 耐久性向上に影響を与えるかは定量的なデータを取り検証する事が、今後の課題の一つと言える。

第3章 光学式探傷装置の実証試験

3-1 光学式探傷装置の改造の概要

本装置は、ニッケル基超合金であるイ ンコネル718を素材とする大型転造ネ ジの加工プロセスにおいて、発生した疵 の検知・記録を目的とするものである。 具体的には、電子カメラを用いたライン センサーで「赤」「緑」「青」の波長の 異なる光を受光し、光の強度を電気信号 に変換し画像処理することにより、目視 では発見できなかった転造ねじ加工で発 生した疵の検知・記録を行もので、図3 -1-1はその概念図を示す。

平成20年度に製作した図3-1-2の光学式探傷装置を用いて採取した画像を解析・統計整理し本装置にインスト ールを行い疵の検知精度を高めることを 目的とする。

3-2 解析ソフトの仕様詳細

1)ハードウェアの改良

カメラ搭載の FPGA(フィールドプ ログラム・ゲートアレイ)のロジックエ リアを最適化する事により、アルゴリ ズムが実装できる容量を確保した。ま た、画像データに画像処理結果を含め て、データの統計・解析が容易に行え るよう改良した。

2) ソフトウェアの改良

複数の対象ワークを繰り返し撮像

図 3-1-1 光学式探傷装置概念図

図 3-1-2 光学式探傷装置

するため、メンテナンス画面、フォーカス調整画面に機械コントロール機能を付け加えて操作性を高めた。 3) 欠陥検出アルゴリズムの改良

H20年度はラインセンサーカメラ内蔵の周波数フィルターを使用したため、一次元方向(横方向)にのみ 周波数を計算するものであったが、本年度改良した周波数フィルターはカメラと画像処理ボードの両方に実 装し、スキャン方向に加えて、流れ方向(回転方向)にも周波数分解できるものである。即ち、画像を縦横 それぞれ別に周波数分解し、特定の帯域の周波数をN倍、又は削除する事ができる。これにより検査対象を 撮像した画像で、特定の大きさの範囲内の画像を、明るさを変換する事によって強調・削除する事ができ、 傷と金属地合の区別に非常に有効な改良となった。

4)特徴解析

H20年度の実験では、画像の変化の激しい部分を特異箇所として欠陥候補としたが、さらに改良を加えて、以下の10項目の特徴を抽出するようにした。

- (1) 面積:特異箇所の総ドット数より面積を求める。
- (2)外周:特異箇所を囲むドット数を数え周囲の長さを求める。
- (3) 真円度:真円に対する変異を1.0~0.0の範囲で表す。
- (4) 高さ:特異箇所のドットの縦方向のドット数を求める。
- (5)幅:特異箇所の幅方向のドット数を求める。

(6) 最小値: 特異箇所に含まれる画像の明るさの分布より最も暗い箇所を求める。

- (7)最大値: 特異箇所に含まれる画像の明るさの分布より最も明るい箇所を求める。
- (8) 平均値: 特異箇所の明るさの平均を求める。
- (9) 中央値: 特異箇所に含まれる画像の最高-最低値の中間値を求める。
- (11)総密度: 面積、周囲長、輝度変化より密度を求める。

3-3 実証試験結果

1) 欠陥サイズの測定

欠陥画像横幅の明暗ヒストグラムより欠陥サイズの測定を行っ た。

(a) ドットA計算計測方法:

画像横幅の明暗のヒストグラム結果より、5%シェアの輝度 値を閾値として計測。画像の中に存在する点を暗い点から明る い点の順に並び変えをし、並び変った点を暗い方から順にカウ ントしていき、5%の位置にある点の明るさを閾値とする。

(b) ドットB計算計測方法:

画像横幅の明暗のヒストグラム結果より、モード値より±1 0%輝度値を閾値として計測。画像の中に存在する点を暗い点

から明るい点の順に並び変えをし、さらに、暗-明までの明るさを256段階に区切り、各段階の別に点の 数をカウントする。このとき一番多かった点の数を代表値として、その前後10%以内の明るさを閾値と する。

(c)欠陥サイズ換算:

外接四辺形の対角長さ

表 3-1-1 欠陥画像サイズ測定値

長さ換算	縦ドット	横ドット	縦ドット	横ドット	縦長さ A	横長さ A	縦長さ B	横長さ B	欠陥サイズ	面積換算
(mm)	Α	А	В	В	(mm)	(mm)	(mm)	(mm)	換算	(mm²)
0.003	3 7	1 1	15	6	0.111	0.033	0.042	0.462	0.464	0.020
0.003	18	2 0	2	13	0.054	0.060	0.385	0.128	0.406	0.049
0.003	4 2	1 1	4 0	0	0.126	0.033	0.584	0.245	0.633	0.143
0.003	11	2 6	1 0	2	0.033	0.078	0.131	0.163	0.209	0.021
0.003	2 6	2 0	14	18	0.078	0.060	0.318	0.190	0.370	0.060

2) 周波数フィルターの選択

取り込み元画像図3-3-2を周波数分解し、1/1~1/10fまでの成分を除去した画像が、図3-3-3となる。

同様に1/50f, 1/100f, 1/250f, 1/500fを除去した画像がそれぞれ図3-3-4、図3 - 3 - 5、図3 - 3 - 6、図3 - 3 - 7となる。

欠陥部分の特徴を損なうことなく、金属地合模様な照明のムラを除去出来ている1/250fカットフィ ルターが最も有効である。

図 3-3-2 元画像

図 3-3-3 周波数 1/1~1/10f かト

図 3-3-1 サイズ判定図

図 3-3-6 1/250fカット

図 3-3-7 1/500fカット

3)特徵抽出結果

3 - 1)画像中のゴミホコリなどの特徴 (欠陥判定 OK) 画像中のゴミ、ホコリなどは、最小値が小さい傾向にあり、また真円度も大きな数値となる傾向がある。 面積に対する周囲長の比率が低い物が多く、スジ状ではない塊状の異物として特定する事が可能である。

3 - 2)サビなどの特徴 (欠陥判定 OK) 濃度の最大値、最小値の差が小さい画像が多い。また、真円度が比較的大きな物でも、周囲長が長いものが多く、形状がなめらかでない事がわかる。

3-3) 金属の地合(欠陥判定 OK) 画像として写り、画像処理プロセスで除去出来なかった殆どの金属地合の跡は縦方向に長いものが多く、 縦横比率では横方向の長さが極端に短いものが多い。

- 3 4)外乱電気ノイズ(欠陥判定 OK) 強度の外乱電気ノイズが発生した場合、多少画像として現れる事があるが、面積は全て1ドットであり、 容易に区別する事が出来る。
- 3 5) ヒビ割れ(欠陥判定 NG) 面積に対する周囲長は極端に長い物が多い。これは殆どの画像でスジ状に写っているためで、面積を測 定する為に計数したドットが1列に並んでいる物が多い。また、縦横長さから求めた外接四辺形面積と比 較すると、面積が極端に小さい場合が殆どである。

3 - 6) 糸状の異物 (欠陥判定 OK) 糸状の異物が混入している場合では、ヒビ割れと殆ど同じ特徴となり、現状の照明・画像処理手法では 区別が困難である。

3-4) 今後の課題

画像処理アルゴリズムの改良で、格段に検出精度をあげる事が出来たが、特徴量抽出の結果を効率よくパラ メータ化する事が出来ると、さらに検出精度が上がる事が予測される。たとえば、今回の実験の範囲で行った 10種類のパラメータの以外に欠陥部分の周回方向の分布や密集度を付加情報として追加すると、どのような 形状の性質を持った欠陥がどのような分布しているかが統計的に把握する事ができ、欠陥抽出の精度向上が期 待できる。 本研究開発により、次のような成果を得ることができた。

()高精度制御機器の開発

ハマックス㈱の保有する100トン転造盤に高精度にト ルク等の転造プロセスの制御パラメーターを制御可能な ように改造したねじ転造装置を開発した。(右写真)

()転造技術の最適化

ハマックス㈱が、制御装置を設置した100トン転造盤に て、ダイスの押込み速度、圧力、位置及び回転数等のプ ロセス条件を変えて、M80以上の大径ねじの転造加工した 比較評価用の転造ねじの試作に成功し、転造プロセスの 最適化の効果を確認した。(右写真)

転造加工試験により製作した転造ねじについては、ハマ ックス(株にて表面疵の有無のマクロ観察を行い、兵庫県立 大学にて断面微細組織、特に転造ねじ底の局部域ミクロ組 織観察を行い、それらの試験結果に基づき最適転造条件を 明らかにし、転造加工条件の最適化へ反映させた。

転造プロセスを、有限要素法(FEM)を用いたシミュレ ーションモデル化を行い、シミュレーションを行い、摩擦 係数、ダイス回転数、送り速度などのパラメーターを変え て転造ねじ加工過程の弾塑性接触大変形FEM解析結果を検

討し、実体での転造加工との比較を行い、大型転造条件の絞込みを行った。

潤滑油についても改良潤滑油を製作し、ハマックス㈱にて、転造盤の主軸トルク値の比較、及び表面マクロ観察(ねじ底の剥離、焼付き状況等の潤滑の影響観察)を行い、兵庫県立大学にて、内部ミクロ組織におけるき裂の有無を観察した。それらの評価から総合的に、最適な潤滑油を選定した。

制御装置を設置した100トン転造盤にて、実機サイズの製品を用い粉末工具鋼を使用したダイスの耐久性の評価 を行い、ダイスにWPC処理(ショットピーニング)を施し加工性・耐久性の評価を行った結果、耐久性向上効果を確 認した。

()品質保証技術の確立

光学式探傷装置を試作し、試験材の地合と疵の判別 を行う画像処理の実証試験を実施して、検査データを 蓄積するとともにソフト改良を行い、実用性の高い検 査装置として完成させた。(右写真)

